21.3实际问题与一元二次方程2.ppt
21.3实际问题与一元二次方程(二),第21章一元二次方程,探究2,两年前生产 1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?,分析:甲种药品成本的年平均下降额为(5000-3000)2=1000(元)乙种药品成本的年平均下降额为(6000-3600)2=1200(元)乙种药品成本的年平均下降额较大.但是,年平均下降额(元)不等同于年平均下降率(百分数),解:设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为5000(1-x)元,两年后甲种药品成本为 5000(1-x)2 元,依题意得,解方程,得,答:甲种药品成本的年平均下降率约为22.5%.,算一算:乙种药品成本的年平均下降率是多少?,比较:两种药品成本的年平均下降率,22.5%,(相同),例1、已知某城市2011的绿地面积为60公顷,为满足城市发展的需要,计划到2013年底使城区绿地面积达到72.6公顷,试求2012年,2013年两年绿地面积的年平均增长率。,解:设2012年,2013年两年绿地面积的年平均增长率为x,根据题意,得 60(1x)272.6 x1=0.1=10%,x2=2.1(不合题意,舍去)答:2012年,2013年两年绿地面积的年平均增长率为10%,例2、商店里某种商品在两个月里降价两次,现在该商品每件的价格比两个月前下降了36,问平均每月降价百分之几?,解:设平均每月降价的百分数为,又设两个月前的价格为 元,则现在的价格为 元,根据题意,得,不合题意舍去答:平均每月降价,类似地 这种增长(下降)率的问题在实际生活普遍存在,有一定的模式,若平均增长(或降低)百分率为x,增长(或降低)前的是a,增长(或降低)n次后的量是A,则它们的数量关系可表示为:,其中增长取“+”,降低取“”,小结,试一试,1.某乡无公害蔬菜的产量在两年内从20吨增加到35吨.设这两年无公害蔬菜产量的年平均增长率为x,根据题意,列出方程为 _.,3.某经济开发区今年一月份工业产值达50亿元,第一季度总产值175亿元,设二月、三月平均每月增长的百分率为x,根据题意得方程为(),2某电视机厂1999年生产一种彩色电视机,每台成本 3000元,由于该厂不断进行技术革新,连续两年降低成本,至2001年这种彩电每台成本仅为1920元,设平均每年降低成本的百分数为x,可列方程_.,练习,1.某厂今年一月的总产量为500吨,三月的总产量为720吨,平均每月增长率是x,列方程()A.500(1+2x)=720 B.500(1+x)2=720 C.500(1+x2)=720 D.720(1+x)2=5002.某校去年对实验器材的投资为2万元,预计今明两年的投资总额为8万元,若设该校今明两年在实验器材投资上的平均增长率是x,则可列方程为,B,1、平均增长(降低)率公式,2、注意:(1)1与x的位置不要调换(2)解这类问题列出的方程一般 用 直接开平方法,小结,这里要特别注意:在列一元二次方程解应用题时,由于所得的根一般有两个,所以要检验这两个根是否符合实际问题的要求,列一元二次方程解应用题的步骤与列一元一次方程解应用题的步骤类似,即审、设、列、解、检、答,