欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    《解直角三角形应用举例》.ppt

    • 资源ID:6236190       资源大小:599KB        全文页数:23页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    《解直角三角形应用举例》.ppt

    28.2 解直角三角形应用举例(2),用数学视觉观察世界用数学思维思考世界,指南或指北的方向线与目标方向线构成小于900的角,叫做方位角.如图:点A在O的什么方向?点B在点O的什么方向?,方位角,课前复习,例5 如图,一艘海轮位于灯塔P的北偏东65 方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34方向上的B处,这时,海轮所在的B处距离灯塔P有多远(结果取整数)?,利用解直角三角形的知识解决实际问题的一般过程是:,1.将实际问题抽象为数学问题;,(画出平面图形,转化为解直角三角形的问题),2.根据条件的特点,适当选用锐角三角函数去解直角三角形;,3.得到数学问题的答案;,4.得到实际问题的答案.,巩固练习:海中有一个小岛A,它的周围8海里范围内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60方向上,航行12海里到达D点,这时测得小岛A在北偏东30方向上,如果渔船不改变航线继续向东航行,有没有触礁的危险?,B,A,D,F,60,12,30,B,A,D,F,解:由点A作BD的垂线,交BD的延长线于点F,垂足为F,AFD=90,由题意图示可知DAF=30,设DF=x,AD=2x,则在RtADF中,在RtABF中,,解得x=6,10.4 8没有触礁危险,30,60,1.如图所示,轮船以32海里每小时的速度向正北方向航行,在A处看灯塔Q在轮船的北偏东30 处,半小时航行到B处,发现此时灯塔Q与轮船的距离最短,求灯塔Q到B处的距离(画出图像后再计算),相信你能行,A,2如图所示,一渔船上的渔民在A处看见灯塔M在北偏东60方向,这艘渔船以28海里/时的速度向正东航行,半小时至B处,在B处看见灯塔M在北偏东15方向,此时灯塔M与渔船的距离是(),海里.海里C.7海里 D.14海里,气象台发布的卫星云图显示,代号为W的台风在某海岛(设为点O)的南偏东45方向的B点生成,测得 台风中心从点B以40km/h的速度向正北方向移动,经5h后到达海面上的点C处因受气旋影响,台风中心从点C开始以30km/h的速度向北偏西60方向继续移动以O为原点建立如图12所示的直角坐标系,(1)台风中心生成点B的坐标为,台风中心转折点C的坐标为;(结果保留根号)(2)已知距台风中心20km的范围内均会受到台风的侵袭如果某城市(设为A点)位于点O的正北方向且处于台风中心的移动路线上,那么台风从生成到最初侵袭该城要经过多长时间?,解:(1),(2)过点C作 于点D,如图2,则,在 中,台风从生成到最初侵袭该城要经过11小时,王英同学从A地沿北偏西60方向走100m到B地,再从B地向正南方向走200m到C地,此时王英同学离A地多少距离?,A,B,C,北,南,西,东,D,E,600,100m,200m,练习,新人教版九年级数学(下册)第二十八章,28.2 解直角三角形(4),用数学视觉观察世界用数学思维思考世界,修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的倾斜程度.坡面的铅垂高度(h)和水平长度(l)的比叫做坡面坡度(或坡比).记作i,即 i=.坡度通常写成1m的形式,如 i=16.坡面与 水平面的夹角叫做坡角,记作a,有i=tan a.显然,坡度越大,坡角a就越大,坡面就越陡.,例5.如图,拦水坝的横断面为梯形ABCD(图中i=1:3是指坡面的铅直高度DE与水平宽度CE的比),根据图中数据求:(1)坡角a和;(2)坝顶宽AD和斜坡AB的长(精确到0.1m),解:(1)在RtAFB中,AFB=90,在RtCDE中,CED=90,如图一段路基的横断面是梯形,高为4.2米,上底的宽是12.51米,路基的坡面与地面的倾角分别是32和28求路基下底的宽(精确到0.1米),1.认清图形中的有关线段;2.分析辅助线的作法;3.坡角在解题中的作用;4.探索解题过程.,练习,作DEAB,CFAB,垂足分别为E、F由题意可知 DECF4.2(米),CDEF12.51(米).在RtADE中,因为 所以,在RtBCF中,同理可得 因此 ABAEEFBF 6.7212.517.90 27.13(米)答:路基下底的宽约为27.13米,4 如图,水库大坝的截面是梯形ABCD,坝顶AD=6m,坡长CD=8m.坡底BC=30m,ADC=1350.(1)求坡角ABC的大小;(2)如果坝长100m,那么修建这个大坝共需多少土石方(结果精确到0.01m3).,咋办,先构造直角三角形!,如图,沿水库拦水坝的背水坡将坝面加宽两米,坡度由原来的1:2改成1:2.5,已知原背水坡长BD=13.4米,求:(1)原背水坡的坡角 和加宽后的背水坡的坡角;(2)加宽后水坝的横截面面积增加了多少?(精确到0.01),3.如图3,从地面上的C,D两点测得树顶A仰角分别是45和30,已知CD=200m,点C在BD上,则树高AB等于(根号保留),4.如图4,将宽为1cm的纸条沿BC折叠,使CAB=45,则折叠后重叠部分的面积为(根号保留),1.在解直角三角形及应用时经常接触到的一些概念(方位角;坡度、坡角等)2.实际问题向数学模型的转化(解直角三角形),知识小结,6.如图2,在离铁塔BE 120m的A处,用测角仪测量塔顶的仰角为30,已知测角仪高AD=1.5m,则塔高BE=_(根号保留),5.如图1,已知楼房AB高为50m,铁塔塔基距楼房地基间的水平距离BD为100m,塔高CD为 m,则下面结论中正确的是()A由楼顶望塔顶仰角为60B由楼顶望塔基俯角为60C由楼顶望塔顶仰角为30 D由楼顶望塔基俯角为30,C,利用解直角三角形的知识解决实际问题的一般过程是:(1)将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题);(2)根据条件的特点,适当选用锐角三角形函数等去解直角三角形;(3)得到数学问题的答案;(4)得到实际问题的答案,

    注意事项

    本文(《解直角三角形应用举例》.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开