欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    《定积分在几何、物理中的应用》参.ppt

    • 资源ID:6235311       资源大小:700KB        全文页数:23页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    《定积分在几何、物理中的应用》参.ppt

    定积分在几何中的应用,一.定积分的几何意义是什么?,1、如果函数f(x)在a,b上连续且f(x)0时,那么:定积分 就表示以y=f(x)为曲边的曲边梯形面积。,曲边梯形的面积,复习引入,曲边梯形的面积的负值,2、定积分 的数值在几何上都可以用曲边梯形面积的代数和来表示。,二、微积分基本定理内容是什么?,设函数f(x)在区间a,b上连续,并且F(x)f(x),则,,这个结论叫微积分基本定理(fundamental theorem of calculus),又叫牛顿莱布尼茨公式(Newton-Leibniz Formula).,例1 计算由曲线y2=x,y=x2所围图形的面积S。,分析 首先画草图(1.7-1).从图中可以看出,所求图形的面积可以转化为两个曲边梯形面积的差,进而可以用定积分求面积S。为了确定出被积函数和积分的上、下限,我们需要求出两条曲线的交点的横坐标。,解:作出y2=x,y=x2的图象如图所示:,即两曲线的交点为(0,0),(1,1),直线y=x-4与x轴交点为(4,0),解:作出y=x-4,的图象如图所示:,点评:求两曲线围成的平面图形的面积的一般步骤:,定积分在几何中的应用,1.求下列曲线所围成的图形的面积:(1)y=x2,y=2x+3;(2)y=ex,y=e,x=0.,解:,求两曲线的交点:,8,2,解:,求两曲线的交点:,于是所求面积,思考题:在曲线y=x2(x0)上某点A处作切线,使之与曲线及x轴围成图形的面积为1/12。求过点A的切线方程.,三.小结,求两曲线围成的平面图形的面积的一般步骤:,(1)作出示意图;(弄清相对位置关系),(2)求交点坐标;(确定积分的上限,下限),(3)确定积分变量及被积函数;,(4)列式求解.,设物体运动的速度v=v(t)(v(t)0),则此物体在时间区间a,b内运动的距离s为,一、变速直线运动的路程,解:由速度时间曲线可知:,二、变力沿直线所作的功,1、恒力作功,2、变力所做的功,问题:物体在变力F(x)的作用下做直线运动,并且物体沿着与F(x)相同的方向从x=a点移动到x=b点,则变力F(x)所做的功为:,例2 如图:在弹性限度内,将一弹簧从平衡位置拉到离水平位置L 米处,求克服弹力所作的功,解:在弹性限度内,拉伸(或压缩)弹簧所需的力(x)与弹簧拉伸(或压缩)的长度x成正比,即:F(x)=kx,所以据变力作功公式有,L,1、一物体在力F(x)=3x+4(单位:N)的作用下,沿着与力F相同的方向,从x=0处运动到 x=4处(单位:m),求F(x)所作的功.,练一练,40,2.一物体沿直线以v=2t+3(t的单位为s,v的单位为m/s)的速度运动,求该物体在35s间行进的路程.,解,所求功为,

    注意事项

    本文(《定积分在几何、物理中的应用》参.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开