“市场研究及数据分析“理念及方法概要介绍.ppt
CE系列讲座之一:“市场研究及数据分析”理念及方法概要介绍,战略发展部,Objectives,从Marketing Reseach的角度将CE 相关方法进行关联与梳理,旨在提供一种全视图,以便根据应用需求选择性使用!提供Consumer Insight的基本理论框架,以便将Consumer Insight 理念融汇于各方法之中!简介实际操作的基本原则,提高日常操作的效率与效果!,有效市场是由一群对某一产品/服务有兴趣、有收入和有通路的潜在客户所组成,序:市场,产品/服务,根据顾客的需要确定:,生产/提供特定的:,将:,有效地提供给目标消费者,产品/服务,产品/服务,序:营销的本质,序:营销的起点&终点:用户需求,目录,What:Marketing Research 是什么?Marketing Research 定义 Marketing Research 与营销的关系 Marketing Research 本质 Marketing Research 的角度看CE的几种方法 Why:为什么进行Marketing Research?How:如何进行Marketing Research?Marketing Reseach 的分类 Marketing Research 几个重要操作原则简介 抽样原则 定性大纲设计基本原则 定量问卷设计基本原则 数据分析:多元统计&数据挖掘基本方法 Consumer Insight 基本理论框架,What(1):Marketing Research定义,美国市场研究协会(AMA)对市场研究的定义是:市场研究是将消费者、顾客及公众与厂商通过信息而联系起来的桥梁,其信息是用来:识别、定义市场机会和市场问题产生、改进和评估市场营销活动监测市场营销的表现提高对市场营销过程的理解,What(3):Marketing Research本质是Consumer Insight,了解消费者,信息,What(4):Marketing Research角度看CE的相关方法,信息获取:Marketing Research:以访问为信息主要获取方式 信息来源以用户回忆为主;用户体验中心:以观察为信息主要获取方式信息来源以用户实时操作为主;数据挖掘:以记录用户实际发生的行为为信息主要获取方式;信息来源以用户长期用户行为监测为主;,信息理解&应用:Marketing Research:探求问题原因为主(与数据挖掘互补),以解决营销、品牌、运营问题为主;主要应用包括自身产品+竞品研究;用户体验中心:探求互联网产品的使用障碍和流程,提升产品的可用性和易用性;主要应用包括自身产品+竞研究;数据挖掘:以发现问题为主;主要应用是自身产品研究,目录,What:Marketing Research 是什么?Marketing Research 定义 Marketing Research 与营销的关系 Marketing Research 本质 Marketing Research 的角度看CE的几种方法 Why:为什么进行Marketing Research?How:如何进行Marketing Research?Marketing Reseach 的分类 Marketing Research 几个重要操作原则简介 抽样原则 定性大纲设计基本原则 定量问卷设计基本原则 数据分析:多元统计&数据挖掘基本方法 Consumer Insight 基本理论框架,Why:为什么要使用市场研究?,决策?,有市场研究,没有市场研究,*直觉的*主观的*经验的/历史的*从自身内部出发的,*有资讯基础的*客观的*实时的*从外到内的,有风险的,低成本的,迅速,有争议的,低风险的,昂贵的,需要时间的,一致的,了解 我们往何处去,资金/成本,结构变化,人员变化,竞争对手,外在环境,消费趋势,外部环境不确定性,.,.,外部,内部,Why:市场研究可以提供什么?,市场.市场容量 市场结构 消费者细分 消费者期望/需求 市场分额 市场短期变化 长期演化趋势,定位.消费者如何看待-产品/服务-包装,价格,广告 等.品牌/企业形象 如何提升产品形象?如何定位,才能使新产品被消费者更易于接 受?.,消费者.谁是产品/服务的消费者-核心/游离/潜在.需求&期望 动机 如何才能被满足如何更好和他们沟通 如何维持他们的忠诚 哪里能找到更多消费者,自身公司/企业.我们的强/弱势 主要的市场机会 如何达到它们 如何克服威胁 供应链 通路终端“内部顾客 如何提升系统的效率?,竞争对手.SWOT分析 现有的市场活动 这些活动有效吗?与消费者关系 行销定位 变化的早期预警 未来计划,目录,What:Marketing Research 是什么?Marketing Research 定义 Marketing Research 与营销的关系 Marketing Research 本质 Marketing Research 的角度看CE的几种方法 Why:为什么进行Marketing Research?How:如何进行Marketing Research?Marketing Reseach 的分类 Marketing Research 几个重要操作原则简介 抽样原则 定性大纲设计基本原则 定量问卷设计基本原则 数据分析:多元统计&数据挖掘基本方法 Consumer Insight 基本理论框架,市场研究的分类,专项研究 定量研究 定性研究 连续性研究 零售网点研究 媒介监测研究 消费者跟踪研究,有多少?主要特征是什么?将来怎么样?,简而言之,什么?为什么?怎么样?,定量,定性,HARD,SOFT,市场研究的分类-定性&定量对比(1),How:市场研究的分类-定性&定量对比(2),研究内容支持体调查方式分析方法深广度,定 性,动机、态度、决过程口头表达的信息深访、座谈会心理分析,经验/灵感深度探测,定 量,事实、意见、行为数字、尺度入户面访、街访、电话、信函统计分析广度探测,多方面和表面,定性研究的优点:深层次、多角度、多种方式(如投射技术等)获得信息,而且受时间的限制较少。客户可以根据研究的进展,适当的调整研究的重点。项目的总费用相对较低,时间较短。定性研究的不足之处:不具有以样本推断总体特性,不能统计分析。提供描述性的资料,而非“硬性”的数据,市场研究的分类-定性&定量对比(3),定量:度量,分析,估计,预测 和跟踪定性:解释,产生,精炼,说明 和描述,普遍性问题:先做定性研究还是先做定量研究?回答:这取决于你的研究目的,你甚至可以两者都做!,对市场了解甚少,探索性的定性研究,定量研究(U&A),诊断性的定性研究,定量研究,对市场很有把握,对数据看不明白,量化数据,市场研究的分类-定性&定量对比(4),市场研究的分类-定性&定量调查的具体方法,定性研究的调查方法(数据获取方法)深度访谈 焦点座谈会(Focus Group)神秘客户访谈,抽样基本原则(1),什么才是好的抽样?有足够的代表性符合统计学基本原理具有充分的可操作性有效率的实施/执行中的偏差越小越好,常用的抽样方法?定性研究不是随机抽样所涵盖的范畴需注意其样本有足够的代表性定量研究入户访问:分层系统抽样街头访问:配额抽样,但不具备理论上的抽样条件预约面访:视具体情况而定,关键是是否取得比较完整的抽样框,备注:对于抽样统计学原理,有兴趣的可以TinaFu联系,在此不做详述。,抽样基本原则(2),样本量的选取:从理论上讲,样本数越大,抽样误差越小,结果的代表性越好。但是,同时考虑费用和时间因素,大样本量不一定是最有效率的办法。在随机抽样条件下,不同样本规模的抽样误差如下:,定性大纲设计基本原则,结构设计原则(漏斗结构):From wide to narrow:例如:从生活方式到产品使用行为&态度From generic to specific 例如:从品类到品牌 问题设计原则:挖掘为什么?即表象原因背后可能隐藏的深层次的原因(很大程度上取决于对业务的理解)努力使用开放式问题,避免进行引导和给出选择性答案;注意前后问题的相互干扰性突出重点可以使用投射技术,但不要过多部分专题可以使用Laddering技术:例如从功能利益点到情感利益点的探求,多用于创意的产生,定性大纲设计基本原则:Case Study,Lifestyle attitude,Category/product attitude and usage,Brand awareness and usage,Brand image,Product/brand concept,Advertising evaluation,Product/packaging test/evaluation,U&A,Brand image,Concept test,Adv./Concept Test,定量问卷设计基本原则:2个基本原则,UNDERSTANDING可理解:保证回答的准确性,WILLINGNESS有意愿:保证回答的真实性,问题&答案不要含糊清晰且可以落地;问题&答案不能带有倾向性;问题&答案不能有双重含义;问题与答案不协调具有一致性;答案之间具有排他性 不要使用行业/专业/技术术语,对于敏感问题(包括涉及社会道德准则、社会地位等等):通过映射第三方得到答案,定量问卷常用的问题类型,封闭式问题注意点:尽可能穷尽选项,但往往很困难;因此需要增加“其他”选项;如果其他选项占比超过,则说明选项设置有问题;开放式问题 应用场景:往往在封闭题之后,提出相关的追问;评分题主要有5分制、7分制、10分制:选用几分制取决于需要细化的程度,问卷设计:Case Study,您觉得拍拍这两年来情况怎样?(问题不清晰),大家都认为拍拍的这个新功能不错,您觉得怎么样呢?(具有引导性),拍拍新推出了一项(什么什么样的)功能,您觉得怎么样呢?(选项不全),您在什么情况下使用手机上网?【答案不排他】,问卷结构:Case Study,General attitudes/beliefsScreening questionsClassification dataUsership questionsSensitive questionsIntroductionGeneral survey questions Closing and thanks,Order of asking,52736148,数据分析:“简单数据分析+多元统计+数据挖掘”整体视图,简单的数据分析,多元统计分析,数据挖掘,方法适用性与优势,主要方法列举,集中趋势分析:众数、中位数、均数 离散趋势分析:极差、方差、标准差 交叉表 剖面指数 数据加权,简单分析变量间关系相对应用较广,较容易掌握和使用对数据和使用者的要求较低,相关分析 回归分析 因子分析 聚类分析 对应分析 联合分析,分析变量间的因果关系、相似度等多用于预测、用户细分等场景对数据要求:数据量要足够、数据周期要足够;对使用者的要求:需要掌握基本的统计学知识和对业务有一定理解;,神经网络 决策树 等等,优势在于可以定制算法满足个性化需求和具备自适应和自学习性;对数据要求;Oracle数据库支持;对数据量和数据健壮性要求均很高;对使用者要求:对算法、业务的理解度均高,多元统计分析有需要者请参考附件基础统计;数据挖掘有需要者可和Tina联系,简单数据分析简介(1):集中趋势&离散趋势,集中趋势(Central Tendency)指标:众数(Mode):发生率最高的数值;适用于所有的测量水平中位数(Median):数值排序后正好位于中间位置的数;适用于定序、定距、定比数据算术平均数或均值(Mean):各数值的简单平均;适用于定距数据与定比数据离散趋势(Measures of Dispersion)指标:全距或极差(Range):一个定序型变量最大值与最小值的差上、下四分位数:方差(Variance):一个变量所有值与其平均值之差的平方的平均数标准差(Standard Deviation):方差的平方根,简单数据分析简介(2):交叉表的行列百分比&交叉表,高收入细分市场该年龄段的列百分比高收入细分市场某年龄段的剖面指数=100%总体市场该年龄段的列百分比,指数=100%是等于总体市场指数=120%或以上,则认为显著高于总体水平指数=80%或以下,则认为显著低于总体水平,举例:18-24岁的高收入人群的行百分比:26%;指18-24岁高收入人群在整体高收入中的比例为26%;18-24岁的高收入人群的列百分比:31.2%;指18-24岁高收入人群在18-24岁人群中的比例为31.2%18-24岁的高收入人群的剖面指数:104;,简单数据分析简介(3):数据加权,加权:通过对总体中的各个元素设置不同的数值系数(即加权因子/权重),使元素表现出所希望的相对重要性程度;简单地说,就是要“让一些人变得比另一些人更重要!”,多元统计分析:相关分析Case Study,成交量相关系数,成交额相关系数,多元统计分析:回归&因子分析Case Study,情感诉求的产品对QQ满意度的贡献最大、其次是游戏类产品、功能性诉求的产品贡献最低。,Consumer Insight:Why,Sometimes,we do not want to admit or even realize the real reason for our behavior because it is,more often than not irrational,People do not always say what they mean or mean what they say(People are complex),Consumer Insight(1):Motivation(1),Maslow马斯洛需求原理,Consumer Insight(1):Motivation(2)Universal Needs,Consumer Insight(1):Motivation(2)Universal Needs,Case Study,MSN:更加偏重社会属性,表现为和谐 与 安全 QQ:更加偏重自我属性,表现为自我感觉良好、表现自我 TM:同时兼有社会和自我的两种属性,表现为 自由自在、尊重、成为领导者,Case Study,QQGame用户的情感诉求:自由自在、自我放纵、乐趣与兴奋、拥有智慧和知识、尊重。联众用户的情感诉求:爱和被爱、乐趣和兴趣、和谐。中游用户的情感诉求:吸引力、掌握和驾驭、自我感觉良好、安全。新浪游戏用户的情感诉求:表现自我、自由自在、拥有智慧和知识。,品牌,情感诉求,*:其他游戏品牌由于样本量低于30,无法进行数据分析。,Age,gender,SEGLifestage,DEMOGRAPHICS,Consumer Insight(2):Segmentation,BEHAVIOUR,NEEDS,ATTITUDES,ProductPriceServiceBrand/Image,LifestyleInvolvementInterestRisk/Experimentalism,RepertoirePurchase processDecision process,Consumer Insight(3):Brand Locator Model,模拟品牌定位,确定优化品牌定位的关键所在,Consumer Insight(4):AIDAL Model,Consumer Insight(5):Brand Equity Model(1),BrandValue品牌价值(alternative),Equity品牌资产,Price价格,Performance功能表现,BrandValue品牌价值,=,Brand value 品牌价值,Customer behaviour 消费者行为,Identification认同感,Approval社会认可,Authority 权威性,Emotional 情感利益,Affinity亲和力,Barriers阻碍,Loyal 忠诚,Switch 转换品牌,Consumer Insight(5):Brand Equity Model(2),Universal Needs 通用需求,Consumer Insight(5):Brand Equity Model(3),Prestige 声望,Acceptability他人接受度,Performance功能表现,Affinity亲和力,Heritage 历史传承,Innovation 创新性,Nostalgia 美好回忆,Identification 认同感,Equity品牌资产,Trust 信赖感,Bonding 情感连结,Caring 关怀,Endorsement 权威认可,知名度,熟悉程度,Consumer Insight(5):Case Study,Toilet paper 厕纸,Toothpaste 牙膏,Soft drinks 软饮料,Computers 计算机,Financial services 金融服务,Automotive 汽车,Bottled water 瓶装水,Source:Research International Database,0%,50%,100%,Affinity 亲和力,Performance 功能表现,Batteries 电池,Shampoo 洗发水,Telecoms 电信,Spirits 酒类,Utilities,Coffee 咖啡,Retail 零售,Dog food 狗粮,Airlines 航空服务,Chocolate 巧克力,某些市场更多地由亲和力驱动,Consumer Insight(5):Case Study,Mac 苹果,Packard Bell,Hewlett-Packard惠普,Tiny,IBM,Gateway 基汇,Dell戴尔,Compaq康柏,市场平均值,60,120,72,94,95,95,105,105,111,112,Source:RI case study-UK home PC market数据来源:RI 英国家用电脑市场案例,Case Study:我的品牌资产有多强?,Consumer Insight(5):Case Study,Consumer Insight(7):Innovation Workshop,写于最后,一句话“用户研究理念”和“业务的理解”是两条主线,是一切研究的起点和终点;数据采集方法(观察法、访问法、行为记录法)&数据分析方法(简单数据分析、多元统计分析、数据挖掘)仅仅是为了实现目标的工具,需要针对“实际需要”选择性使用!,Know consumer world.了解消费者的世界,seize the future抓住未来,“基础统计”应用简要概述,战略发展部 TinaFu/2007,目录,市场研究使用统计技术的必要性 统计技术的基础 测量尺度(变量)类型 数据加权 数据的描述性统计:频数分布和基本统计量 数据的推断性统计:假设检验 多元统计技术 相关分析 回归分析 因子分析 主成分分析 聚类分析 对应分析 联合分析,市场研究与统计学,统计学(Statistics)是关于数据资料的 的一门学科,市场(营销)研究(Marketing Research)AMA是营销者通过信息与消费者、顾客和公众联系的一种职能。这些信息用于识别和定义营销问题与机遇,制定、完善和评估营销活动,监测营销绩效,改进对营销过程的理解。确定解决问题所需的信息,设计信息收集方法,管理和实施数据收集过程,分析结果,就研究结论及其意义进行沟通。,市场研究的数据分析过程,问卷设计,数据录入和查错,探索性分析,确证/结论性分析,高级分析,分析始于这里!确信问卷覆盖你要达成研究目的所需要的全部内容。巧妇难为无米之炊!设计不严谨、信息不完备的问卷是任何“强有力”统计工具的“毒药”!,大量的交叉表数据,对研究结论进行支持。,对关键/核心题目的数据(如Topline Data)进行简要分析,粗略把握研究发现,并生成初步的研究结论(可能只是假设),确信您获得了所需要的全部数据信息,并且它们是准确无误的。,一方面,结合高级统计技术进行一些深入的数据挖掘和分析;一方面,将数据信息与营销理论结合,形成研究结论并给出建议。,为什么要使用统计技术?,总体(Population)我们想要调查并获得研究问题的答案的特定群体(如18-49岁每天吸烟至少10支以上的男性),样本(Sample)从总体中尽可能随机抽取出的一个有代表性的子集,他们是实际的受访者,R1,R2,RN,研究目的:揭示总体在行为、态度等我们感兴趣的诸方面的属性/特征,解决方案:从总体抽取一个有代表性的样本,通过访问分析样本,通过使用统计量,从样本属性/特征推断总体的属性/特征,我们在使用哪些类型的统计技术?,描述性统计学(Descriptive statistics),是将收集到的原始数据资料直接通过图表等形式进行概括或描述(如交叉表),是对数据进行定量分析的不可或缺的基础,推断性统计学(Inferential statistics),通过来自总体的有限多个样本获得的带有不确定性的信息,来推测整个总体的信息,如参数估计(少用)、假设检验(常用),多元统计技术(multivariate technique),关注的是两个或以上变量之间的相互关系(相关系数、协方差、距离等),并基于相互关系进行各种分析,如因子分析,聚类分析等,目录,市场研究使用统计技术的必要性 统计技术的基础 测量尺度(变量)类型 数据加权 数据的描述性统计:频数分布和基本统计量 数据的推断性统计:假设检验 多元统计技术 相关分析 回归分析 因子分析 主成分分析 聚类分析 对应分析 联合分析,市场调研面对消费者,但所测量的并不是消费者本身,而是测量他们的感受、态度、偏好和其他相关的特性。测量尺度(变量):在调查中,不同被访者给出有差异答案/选项的各个题目/条目;,测量尺度(Measure scale),测量尺度类型,名义尺度(nominal scale),数字只用做对事物进行识别和分类的标志和标签例如:性别,婚姻状况,国籍/城市等;只允许计算有限的以频率计数为基础的统计指标,如百分比、众数等;,有序尺度(ordinal scale),数字代表事物拥有某种属性的相对程度/位置,但没有指明差别的大小例如:偏好排序,市场/行业地位等;频率计数,以及基于分位点的统计指标(百分位数,中位数等),定距尺度(interval scale),尺度上数字相等的距离代表了被测特性的相等值,即可以比较事物之间差别的大小例如:偏好/态度量表(5-scale/7-scale),重要性评分;零点位置不固定,即尺度可以变换;可以计算通常使用的统计量,但尺度值之间的比率及其它一些特殊统计量不适合计算;,比率尺度(Ratio scale),可以依据尺度值对事物进行分类、比较等,以及计算相互之间的差值、比率等例如:年龄,收入,工作年数,花费等;有绝对零点,可以计算所有统计量;,测量尺度示例,表1.测量尺度示例 名义尺度 有序尺度 定距尺度 比率尺度测试品牌品类编号到达率排序重要性(5-scale)投放量到达率(%)厦新手机11427574高露洁牙膏22520069联想手机13312565三九胃泰44410051东信手机1535037第5季维C饮料365037金帝巧克力3728330阿迪达斯98115028三九正天丸4925028安吉尔饮水机51052722爱浪音响51115419耐克运动鞋91222514,来源:2003年第1季实效鉴证(武汉),加权(Weighting)是什么?,加权:通过对总体中的各个元素设置不同的数值系数(即加权因子/权重),使元素表现出所希望的相对重要性程度;简单地说,就是要“让一些人变得比另一些人更重要!”,为什么要加权?(1),应用1:所调研样本的人口统计结构与总体的实际状况不匹配,通过加权来消除/还原这种变异,达到纠偏的目的;例如,在SH和GZ各调查300样本,城市人口比例“SH:GZ=2:1”(假设),在分析时我们希望将SH和GZ看作一个整体,则此时我们需要给SH样本一个2倍于GZ样本的权重;应用2:除了人口统计结构,在一些关键属性上测试样本组的代表性可能也会相对总体的实际状况过高/过低,此时,需要加权进行调整;这类不匹配大多是我们“故意”而为(通过“追加”样本实现),比如设置配额要求被访者中某产品的使用者达到50%,但总体市场中实际使用者仅为10%;有时,则是“非情愿”的出现,比如设置了能反映总体的配额比例,但实际操作却出现了比例偏高/偏低;,为什么要加权?(2),应用3:在样本组对比测试中,也会通过加权来调整不同组间的样本属性不相匹配的情形(通常设有相同的配额,但执行有可能会出现差异);通常,加权对结果产生的差异很小,更多的是对结果从准确度上进行修饰;应用4:所测试样本出现了较多的缺失值,需要加权来纠正结果;对于面向单一客户的专项研究,在调查前基本都协议有要完成的样本量,故这种情形较少;,因子加权:对满足特定属性的所有被访者赋予一个权重,通常用于提高样本中具有某种特性的被访者的重要性;例如,研究一种香烟的口味是否需要改变,那么不同程度吸食者的观点也应该有不同的重要性对待:实际应用中,如果“经常/普通吸食者”的基数足够大,往往单独分析而不进行如上的加权处理;目标加权:对某一特定样本组赋权,以达到们预期的特定目标;例如,,加权的类型(1),想要:品牌A的20%使用者=品牌B的50%使用者;或 品牌A的20%使用者=品牌A的80%非使用者;,权重频繁吸食者3.0普通吸食者2.0偶尔/不吸食者1.0,轮廓加权:与因子/目标加权不同(一维的),轮廓加权应用于对测试组的相互关系不明确的多个属性加权;面对多个需要赋权的属性,轮廓加权过程应该同时进行,以尽可能少的对变量产生扭曲;,加权的类型(2),制定一个加权计划(1),无论加权的动机是什么,但执行的过程是一样的:依不同属性/指标将样本分为多个组(加权组),然后根据所希望各个组代表的个体规模赋予不同的权重;即明确分析子集/样本组,通常,较多的以人口结构变量、地域变量作为分类指标;明确各个分析子集/样本组中个体的代表性强弱(权重);加权是在数据收集结束后采取的数据“纠偏”行为,但一定要清醒的知道:配额设置不合适、FW执行差或其他错误而造成的“不好”的原始数据收集,即使加权也一定是“无效的”;“提前避免错误/失误发生,总好过事后的任何补救!”,制定一个加权计划(2),项目设计:我们是否有计划进行数据加权?设置什么样的配额 是否有必须的信息用于配额设置?不要设置不必要的配额,即加大FW难度,又增加成本;设置样本结构时,就应该考虑清楚如何去组织这些数据;记住:“提前计划”,尽可能早的确定加权方案,最好在时间表中预留时间专门用于加权;,原始数据:查数要针对“未加权”数表(或 hole-counts);明确加权遵循的原则,并分析加权对其它人口结构变量或关键指标带来的影响;数据中哪些变量是最重要的,加权只针对它们就足够了吧?与DP充分沟通,确保DP理解加权意图并正确操作;,加权数据:确信“加权”被正确地进行;确信数据准确无误后,才开始将数据转化为支持性图表;,加权的负面影响,加权会使数据变得不太稳健是否有基数本身较小的数据加权后基数足够大?检验得到的显著性差异的可靠性如何?进行数据加权,事实上我们已经“低估”了总体的变异程度,对总体信息推断的精确度减低。,加权数据的演示,如果数据有“加权”,我们要明确地告诉客户:为什么加权?加权方案的实施过程;加权对数据的影响,等等;通常,我们应该:在数表上同时标明“未加权”和“加权”的基数,在分析报告可灵活处理,但也应有清晰的、一致的标注;未加权基数:表明各个分析子集内数据的可靠性;加权基数:表明各个分析子集的相对规模;,目录,市场研究使用统计技术的必要性 统计技术的基础 测量尺度(变量)类型 数据加权 数据的描述性统计:频数分布和基本统计量 数据的推断性统计:假设检验 多元统计技术 相关分析 回归分析 因子分析 主成分分析 聚类分析 对应分析 联合分析,描述性统计学(Descriptive statistics),描述性统计学:是将收集到的原始数据资料直接通过图表等形式进行概括或描述;具体地,描述性统计需要考察数据的分布形态(如频数分布),计算表征数据分布的数字特征(如均值,方差);显然,市场研究中由DP完成的大量交叉表,就是典型的对数据的描述性统计;在营销调研(定量)中,尽管是面对整个市场中具有某些属性的消费者进行抽样,但是由于特别的抽样设计、较大的样本容量和严格定义的被访者,通常认为调研信息能够推断整个市场状况(在一定的抽样误差下);因此,调研报告大量使用的仍然是数据的描述性统计。,频数分布(Frequency distribution),频数分布:是了解一个变量选择不同取值的调查对象的数量,是对数据资料的完整描述。通常用直方图(histogram)来显示频数分布形状;频率分布经常会用到,尤其是由其演变出的各种柱状图/条形图;,频数,低阔峰右偏型分布均值:43.1%标准差:19.5%测试品牌数:456个,广告到达率,来源:2003年第3季-2002年第4季实效鉴证无重复发布品牌广告到达率,描述性统计量(1),描述性统计量(descriptive statistic):也称为基本统计量(basic statistic),是对数据的频数分布的概括,最常用的统计量包括:,描述性统计量(descriptive statistic),集中趋势指标(measure of location)测量数据分布的中心,变异性指标(measure of variability)测量数据的分散程度,分布形态指标刻画数据的分布形态相对于正态分布的差异,描述性统计量(2),目录,市场研究使用统计技术的必要性 统计技术的基础 测量尺度(变量)类型 数据加权 数据的描述性统计:频数分布和基本统计量 数据的推断性统计:假设检验 多元统计技术 相关分析 回归分析 因子分析 主成分分析 聚类分析 对应分析 联合分析,推断性统计学(Inferential statistics),推断性统计学:通过来自总体的有限多个样本获得的带有不确定性的信息,来推测整个总体的信息;推断性统计学有4个理论组成部分基础:概率论;前提:抽样理论;主要内容:估计理论,假设检验理论;,假设检验(Hypothesis test),假设检验基本原理:提出一对相互对立的统计假设,以样本信息为决策依据,并以一个设定的概率,对检验假设作出拒绝/不拒绝的决策。假设检验的一个基本假设是:小概率原理,即在一次试验中,小概率事件不可能发生。假设检验包括:单样本检验,主要针对抽样总体的数字特征(参数)提出统计假设;两样本检验,主要针对两样本之间的相关性或差异性提出统计假设;参数检验(parametric test),检验统计量(test statistic)服从某个已知分布;非参数检验(nonparametric test),即分布自由检验,底分布可以是任意的;,假设检验的一般步骤,假设检验的关键术语(1),零假设(null hypothesis)和备择假设(alternative hypothesis):零假设即受到检验的假设,是对一种没有差异、没有影响的状态的描述;拒绝零假设/接受备择假设是有力的,而一次检验接受零假设是不充分的;检验方法:单尾检验(one-tailed test)和双尾检验(two-tailed test)双尾检验:备择假设双方向或无方向表述;只检验差异的存在性,事前无某种支持倾向;单尾检验:备择假设以单方向表述;对结论有一定的方向性支持,检验力度相对更高;,假设检验的关键术语(2),显著性水平(level of significance):即第一类错误发生的概率a由抽样数据作出推断,总有可能犯两类错误;第一类错误a(type I error):拒绝了实际上正确的零假设,即“弃真”;第二类错误b(type II error):接受了实际上错误的零假设,即“取伪”;显著性水平a由研究者对拒绝真实零假设可容忍的风险水平设定;在确定分布下,第二类错误b与样本容量n和a存在数量关系;a=0.05的意义是:真实零假设被拒绝的概率只有0.05,或者说,每100次抽样中会有95次出现零假设的情形;拒绝H0:p=P检验统计量落入拒绝域|H0成立a,即“一次试验小概率事件不可能发生”;,两独立样本(Independent sample)均值的t检验,检验目的:是差异性检验,如检验在细分市场1和细分市场2中品牌认知或忠诚度是否存在差异。t检验(t test)的前提假设:变量服从正态分布,均值已知(或可估计),方差可由样本估计。T 统计量:通常的营销研究环境:来自任何总体的大样本(大于30,t 统计量无精确值,均值的抽样分布近似正态分布),此时,样本标准差是总体标准差的一个合理估计。从而,T 统计量用正态分布Z统计量替代:,两独立样本(Independent sample)均值的t检验,得到两独立大样本均值t检验的接受域(accept area)/置信区间(confidence interval),a=0.05,双尾检验:请参阅基于以上公式编辑的自动处理t检验的文件:t test for difference between two percentages.xls,目录,市场研究使用统计技术的必要性 统计技术的基础 测量尺度(变量)类型 数据加权 数据的描述性统计:频数分布和基本统计量 数据的推断性统计:假设检验 多元统计技术 相关分析 回归分析 因子分析 主成分分析 聚类分析 对应分析 联合分析,统计技术的分类,多元统计技术,多元统计技术,方差/协方差分析,判别分析,典型相关分析,联合分析,因子分析,主成分分析,聚类分析,对应分析,回归分析,相关分析,对所考察的变量都有自变量(independent variable)和因变量(dependent variable)之分,即要解决的是一组变量对一个/多个变量的影响关系和程度,不区分自变量和因变量,所有变量同等对待,侧重于了解变量之间互相关关系,相关分析(Correlation Analysis)的定义,相关分析-了解两个定量(定距/定比)变量之间是否存在线性关系,及其相关程度;例如产品的购买意愿/独特性评价与消费者对产品诸属性认知的相关程度如何;产品的诸多属性/功能的满意度认知分别在多大程度上影响消费者对产品的整体满意度评价;,相关系数 在相关分析中,表征两个定量变量之间线性相关程度的指标/统计量最常用的是Pearson 相关系数(简单相关系数):r是一个无量纲数,且-1 r 1;r绝对数值越大,表明两变量之间的线性相关程度越强;符号只表明相关关系的方向性(同向/反向);相关系数矩阵:考察多个变量两两之间的相关性;变量之间的相关性通常需要进行显著性检验;,r=sum(Xi-Xm)(Yi-Ym)/sqrtsum(Xi-Xm)2(Yi-Ym)2=COVXY/SXSY,相关分析(Correlation)的使用,相关分析的假设前提:针对定量变量,并且二者分布相同;测量的是变量之间线性关系的强弱,不能测量非线性关系;,相关程度的另一衡量指标:决定系数:测量的是一个变量变差(信息)中能被另一个变量所解释的比例;,相关分析是用于了解两个定量变量之间关系最简便且又易于理解的方法,在市场研究中应用也比较广泛;尽管相关分析只是考察变量之间线性关系的强弱,而并不假设二者之间存在依赖/因果关系,但实际分析中通常会区分一个自变量(如产品的属性/功能认知),并依据相关系数对另一变量(如购买意愿/总体满意度)的评价给出支持;研究中以排序量表形式获得的数据,如果类别不太多的话,可能并非严格定距数据,从而往往导致 r 偏小;,相关分析示例(1),Total 7 Total Base:Total respondents 300300 Uniqueness compared