欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    实践应用性问题第39课几何应用性问题.ppt

    • 资源ID:6224706       资源大小:427.50KB        全文页数:41页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    实践应用性问题第39课几何应用性问题.ppt

    第39课 几何应用性问题,几何应用题的形式有长度、面积、体积、角度以及三角函数的计算,还有方案设计等基本解法:先根据题目已知条件准确画出图形,把生活情景的问题转化为数学问题,再运用几何计算中的一些基本方法予以解决,要点梳理,1解图形与几何应用题策略 首先要阅读材料,理解题意,找到考查的主要内容和知识点,揭示实际问题的数学本质,把实际问题转化成数学问题,然后应用相应的知识来解决问题2用代数方法解几何应用题 熟悉相关的知识,注意积累生活经验,灵活运用掌握的有关图形与几何知识,将实际问题转化为数学问题几何题中求线段的长度和求某一个角的度数,往往借用方程的思想方法来解决,难点正本 疑点清源,1(2011济宁)在一次夏令营活动中,小霞同学从营地A点出发,要到距离A点1000m的C地去,先沿北偏东70方向到达B地,然后再沿北偏西20方向走了500 m到达目的地C,此时小霞在营地A的()A北偏东20方向上 B北偏东30方向上 C北偏东40方向上 D北偏西30方向上,基础自测,C,解析:如图,ADBE,则DABABE180,又DAB70,EBC20,所以ABC90.在RtABC中,AC1000,BC500,则BAC30,DAC703040,故在北偏东40方向上,2在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,则树的高度为()A4.8米 B4.6米 C9.6米 D10米 解析:根据相似比,得,x9.6,应选C.,C,3如图,农村常搭建横截面为半圆形的全封闭塑料薄膜蔬菜大棚如果不考虑塑料薄膜埋在土里的部分,那么搭建一个这样的蔬菜大棚需用塑料薄膜的面积是()A64m2 B68m2 C78m2 D80m 2 解析:将大棚圆柱展开,可知是一个矩形和两个半圆,所以大棚面积3222268.,B,4(2010广州)长方体的主视图与俯视图如图所示,则这个长方体的体积是()A52 B32 C24 D9 解析:由主视图可知,这个长方体的长和高分别为4和3,由俯视图可知,这个长方体的长和宽分别是4和2,因此这个长方体的体积为42324.,C,5如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为()A5米 B8米 C7米 D5 米 解析:设圆心为O,连OA、OD,在RtAOD中,OA13,AD12,OD5,CD1358,应选B.,B,题型一有关长度、面积问题【例 1】小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示根据图中的数据(单位:m),解答下列问题:(1)用含x、y的代数式表示地面总面积;(2)已知客厅面积比卫生间面积多21 m2,且地面总面积是卫生间面积的15倍若 铺1 m2地砖的平均费用为80元,那么铺 地砖的总费用为多少元?,题型分类 深度剖析,解:(1)S6x32432y6x2y18.(2)解之,得 总费用:(6421.518)803600(元)探究提高 适当分割,将图形转化为便于求长度、面积的几何图形,知能迁移1(2010江西)图是一张长与宽不相等的矩形纸片,同学们都知道按图所示的折叠方法可以裁剪出一个正方形纸片和一个矩形纸片(如图),(1)实验:将两纸片分别按图、所示的折叠方法进行:请你分析在图、的最右边的图形中用虚线画出折痕,并顺次连接每条折痕的端点,所围成的四边形分别是什么四边形?,(2)当原矩形纸片的AB4,BC6时,分别求出(1)中连接折痕各端点所得四边形的面积,并求出它们的面积比;(3)当纸片ABCD的长和宽满足怎样的数量关系时先后得到的两个四边形的面积比等于(2)所得到的两个四边形的面积比?(4)用(2)中所得到的两张纸片,分别裁剪出那两个四边形,用剩下的8张纸片拼出两个周长不相等的等腰梯形,用图表示并标明主要数据,分别求出两个梯形的周长,解:(1)图所示的是正方形,图所示的是菱形(2)S正方形NMPQS正方形ABEF 448,S菱形NMPQS矩形FEBC 244,S正方形NMPQS菱形NMPQ21.(3)设ABa,BCb,则S正方形 a2,S菱形 a(ba)ab a2,要使S正方形2S菱形,需 a22(ab a2),3a22ab,a0,3a2ba,(4)如图所示,两个等腰梯形周长分别是62,64.,题型二解直角三角形的应用【例 2】如图,A城气象台测得台风中心在A城正西方向300千米的B处,并以每小时10 千米的速度向北偏东60的BF方向移动,距台风中心200千米的范围内是受台风影响的区域(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风的影响,那么A城 遭受这次台风影响的时间有多长?,解:(1)过A画ACBF于C,在RtABC中,ABC30,AB300,AC AB150200,A城受到这次台风的影响(2)以A为圆心,200千米为半径画弧,交BF于D、E两点,在RtACD中,AD200,AC150,CD 50,DE2CD100,A城遭受这次台风影响的时间是 10小时,探究提高 解直角三角形在实际中有广泛的应用,其解题思路是:弄清题中名词术语的意义,然后根据题意画出几何图形,建立数学模型,将实际问题中的数量关系归结为解直角三角形中各元素之间的关系,知能迁移2(1)(2011武汉)如图,铁路MN和公路PQ在点O处交汇,QON30.公路PQ上A处距离O点240米如果火车行驶时,周围200米以内会受到噪音的影响那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,A处受噪音影响的时间为()A12秒 B16秒 C20秒 D24秒,解析:如下图,以点A为圆心,200米长为半径画弧,交MN于点B、C,画ADMN于点D.在RtAOD中,QON30,OA240,所以AD120.在RtABD中,AB200,所以BD160.又CDBD,所以BC320,故时间t 16秒,(2)(2011绍兴)为倡导“低碳生活”,常选择以自行车作为代步工具,如图1所示是一辆自行车的实物图,车架档AC与CD的长分别为45 cm,60 cm,且它们相互垂直,座杆CE的长为20 cm,点A、C、E在同一条直线上,且CAB75,如图2.求车架档AD的长;求车座点E到车架档AB的距离.(结果精确到1 cm,参考数据:sin 750.9659,cos 75 0.2588,tan 753.7321),解:AD 75 cm.车档架AD的长为75 cm.过点E作EFAB,垂足为点F,距离EFAEsin 75(4520)sin 7562.783563 cm.车座点E到车档架AB的距离是63 cm.,题型三利用三角函数进行图形计算【例 3】(2010潍坊)路边路灯的灯柱BC垂直于地面,灯杆BA的长为2米,灯杆与灯柱BC成120角,锥形灯罩折轴线AD与灯杆AB垂直,且灯罩轴线AD正好通过道路路面的中心线(D在中心线上),已知C与点D之间的距离为12米,求灯柱BC的高(结果保留根号),解题示范规范步骤,该得的分,一分不丢!解:设灯柱BC的长为h米,过点A作AHCD于点H,过点B做BEAH于点E,四边形BCHE为矩形 ABC120,ABE30.又BADBCD90,ADC60.在RtAEB中,AEABsin301,BEABcos30.4分 CH.又CD12,DH12.,在RtAHD中,tanADH,8分解得,h12 4(米)灯柱BC的高为(12 4)米 10分探究提高 当有些图形不是直角三角形时,可适当添加辅助线,把它们分割成直角三角形,把实际问题中的数量关系归结为直角三角形中各元素之间的关系,知能迁移3如图,小明想测量塔BC的高度他在楼底A处测得塔顶B的仰角为60;爬到楼顶D处测得大楼AD的高度为18米,同时测得塔顶B的仰角为30,求塔BC的高度 解:如图,BAC60,BDE30,在RtABC中,ABC30,在RtBDE中,DBE60,DAB30,DBA30.DABDBA,DADB18,BE9.塔BC的高度BCBEEC91827(米),题型四几何图形设计【例 4】(2011衢州)ABC是一张等腰直角三角形纸板,CRt,ACBC2.(1)要在这张纸板中剪出一个尽可能大的正方形,有甲、乙两种剪法(如图1),比较甲、乙两种剪法,哪种剪法所得的正方形面积更大?请说明理由.,(2)图1中甲种剪法称为第1次剪取,记所得的正方形面积为S1;按照甲种剪法,在余下的ADE和BDF中,分别剪取正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为S2(如图2),则S2_;再在余下的四个三角形中,用同样的方法分别剪取正方形,得到四个相同的正方形,称为第3次剪取,并记这四个正方形的面积和为S3(如图3);继续操作下去,则第10次剪取时,S10_.(3)求第10次剪取后,余下的所有小三角形的面积和,解:(1)解法一:如图甲,由题意得AEDEEC,即EC1,S正方形CFDE1.如图乙,设MNx,则由题意,得AMMQPNNBMNx,3x2,解得x.S正方形PNMQ 2.又1,甲种剪法所得的正方形的面积更大 说明:图甲可另解,由题意得点D、E、F分别为AB、AC、BC的中点,S正方形CFDE SABC1.,解法二:如图甲,由题意得AEDEEC,即EC1.如图乙,设MNx,则由题意得AMMQQPPNNBMNx,3x2,解得x,又1,即ECMN.甲种剪法所得的正方形的面积更大(2)S2;S10.,(3)解法一:探索规律可知:Sn.剩余三角形的面积和为:2 2.解法二:由题意可知,第一次剪取后剩余三角形面积和为2S11S1,第二次剪取后剩余三角形面积和为S1S21 S2,第三次剪取后剩余三角形面积和为S2S3 S3,第十次剪取后剩余三角形面积和为S9S10S10.,探究提高 根据题意,画出符合题意的各种图形,再逐一用相应的几何知识解答,知能迁移4在一服装厂里有大量形状为等腰三角形的边角布料(如图)现找出其中的一种,测得C90,ACBC4,今要从这种三角形中剪出一种扇形,做成不同形状的玩具,使扇形的边缘半径恰好都在ABC的边上,且扇形与ABC的其他边相切请设计出所有可能符合题意的方案示意图,并求出扇形的半径(只要求画出图形,并直接写出扇形半径),解:半径为2 半径为4 半径为4 半径为4 4,27.证明三角形相似缺乏条理试题如图,DEAB,EFBC,AF5 cm,FB3 cm,CD2 cm,求BD的长学生答案展示 EFBC,AFEABC.又DEAB,CDECBA,.AF5,FB3,CD2,BC.BD.,易错警示,剖析在,中,这 是思路不清产生的错误由于所求线段不是三角形的边长,无 法直接确定相似三角形,同时已知线段与所求线段无直接关联,这就需要改造条件,由DEAB,EFBC,可以得到四边形FBDE是平行四边形,这样BFDE,EFBD,通过证相似能顺利求解,正解EFBC,DEAB,四边形FBDE是平行四边形 BFDE,EFBD.又EFBC,AFEB,AEFC.DEAB,EDCB.AEFEDC.AFEEDC.,即.EF.即BDEF(cm),批阅笔记 用相似形知识解题时,易出现对应关系混乱、定理应用错误的现象,要加强识图能力、联想能力、综合应用能力的训练,找准相似中对应角和对应边,排除交叉图形的干扰,以免造成错觉.,方法与技巧 1几何应用性问题的解题策略是:将实际问题几何化(从实际问题中抽象出基本几何图形)2解题时需要画出图形,在图形中标出已知线段长和角的度数等 3注意几何与代数的联系,及数学思想方法的综合运用,思想方法 感悟提高,失误与防范 1由于某些几何题目的约束较弱(条件趋一般)或图形位置的变化,常常使同一问题具有多种形态,因而有必要考察全面(所有不同情况),才能把握问题的实质,此种情况下应当进行适当分类,就每一种情形研究讨论结论的正确性 2几何求值问题,当未知数不能直接求出时,一般需设出未知数(x),继而建立方程,用解方程的方法去求结果,这是解题中常见的具有导向作用的一种思想,完成考点跟踪训练 39,

    注意事项

    本文(实践应用性问题第39课几何应用性问题.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开