欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    高等数学同济第五版(下)微分方程.ppt

    • 资源ID:6216453       资源大小:5.82MB        全文页数:154页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高等数学同济第五版(下)微分方程.ppt

    微分方程,第十二章,积分问题,微分方程问题,推广,一阶微分方程,高阶微分方程,微分方程的基本概念,第一节,微分方程的基本概念,引例,几何问题,物理问题,第十二章,引例1.,一曲线通过点(1,2),在该曲线上任意点处的,解:设所求曲线方程为 y=y(x),则有如下关系式:,(C为任意常数),由 得 C=1,因此所求曲线方程为,由 得,切线斜率为 2x,求该曲线的方程.,引例2.列车在平直路上以,的速度行驶,制动时,获得加速度,求制动后列车的运动规律.,解:设列车在制动后 t 秒行驶了s 米,已知,由前一式两次积分,可得,利用后两式可得,因此所求运动规律为,即求 s=s(t).,常微分方程,偏微分方程,含未知函数及其导数的方程叫做微分方程.,方程中所含未知函数导数的最高阶数叫做微分方程,(本章内容),(n 阶显式微分方程),微分方程的基本概念,一般地,n 阶常微分方程的形式是,的阶.,分类,或,使方程成为恒等式的函数.,通解,解中所含独立的任意常数的个数与方程,确定通解中任意常数的条件.,n 阶方程的初始条件(或初值条件):,的阶数相同.,特解,通解:,特解:,微分方程的解,不含任意常数的解,定解条件,其图形称为积分曲线.,线性:未知函数及其各阶导数都是一次的。,第二节,第十二章,一阶微分方程,一、可分离变量微分方程,二、齐次方程,三、全微分方程(数一),四、一阶线性微分方程,一、可分离变量微分方程,转化,解分离变量方程,可分离变量方程,分离变量方程的解法:,设 y(x)是方程的解,两边积分,得,则有恒等式,当G(y)与F(x)可微且 G(y)g(y)0 时,说明由确定的隐函数 y(x)是的解.,则有,称为方程的隐式通解,或通积分.,同样,当F(x),=f(x)0 时,上述过程可逆,由确定的隐函数 x(y)也是的解.,例1.求微分方程,的通解.,解:分离变量得,两边积分,得,即,(C 为任意常数),或,说明:在求解过程中每一步不一定是同解变形,因此可能增、,减解.,(此式含分离变量时丢失的解 y=0),例2.解初值问题,解:分离变量得,两边积分得,即,由初始条件得 C=1,(C 为任意常数),故所求特解为,例3.求下述微分方程的通解:,解:令,则,故有,即,解得,(C 为任意常数),所求通解:,练习:,解法 1 分离变量,即,(C 0),解法 2,故有,积分,(C 为任意常数),所求通解:,二、齐次方程,一、齐次方程,二、可化为齐次方程,一、齐次方程,形如,的方程叫做齐次方程.,令,代入原方程得,两边积分,得,积分后再用,代替 u,便得原方程的通解.,解法:,分离变量:,例1.解微分方程,解:,代入原方程得,分离变量,两边积分,得,故原方程的通解为,(当 C=0 时,y=0 也是方程的解),(C 为任意常数),例2.解微分方程,解:,则有,分离变量,积分得,代回原变量得通解,即,说明:显然 x=0,y=0,y=x 也是原方程的解,但在,(C 为任意常数),求解过程中丢失了.,(h,k 为待,二、可化为齐次方程的方程(数一),作变换,原方程化为,令,解出 h,k,(齐次方程),定常数),求出其解后,即得原方,程的解.,原方程可化为,令,(可分离变量方程),注:上述方法可适用于下述更一般的方程,例4.求解,解:,令,得,再令 YX u,得,令,积分得,代回原变量,得原方程的通解:,得 C=1,故所求特解为,思考:若方程改为,如何求解?,提示:,三、一阶线性微分方程,一、一阶线性微分方程,二、伯努利方程,一、一阶线性微分方程,一阶线性微分方程标准形式:,若 Q(x)0,称为非齐次方程.,1.解齐次方程,分离变量,两边积分得,故通解为,称为齐次方程;,对应齐次方程通解,齐次方程通解,非齐次方程特解,2.解非齐次方程,用常数变易法:,则,故原方程的通解,即,即,作变换,两端积分得,例1.解方程,解:先解,即,积分得,即,用常数变易法求特解.令,则,代入非齐次方程得,解得,故原方程通解为,例2、,解:,例3.求方程,的通解.,解:注意 x,y 同号,由一阶线性方程通解公式,得,故方程可,变形为,所求通解为,例4、解微分方程,解:,方程变形为,令,方程化为,二、伯努利(Bernoulli)方程(数一),伯努利方程的标准形式:,令,求出此方程通解后,除方程两边,得,换回原变量即得伯努利方程的通解.,解法:,(线性方程),例4.求方程,的通解.,解:令,则方程变形为,其通解为,将,代入,得原方程通解:,内容小结,1.一阶线性方程,方法1 先解齐次方程,再用常数变易法.,方法2 用通解公式,化为线性方程求解.,2.伯努利方程,思考与练习,判别下列方程类型:,提示:,可分离 变量方程,齐次方程,线性方程,线性方程,伯努利方程,1.求一连续可导函数,使其满足下列方程:,提示:,令,则有,利用公式可求出,2.设有微分方程,其中,试求此方程满足初始条件,的连续解.,解:1)先解定解问题,利用通解公式,得,利用,得,故有,2)再解定解问题,此齐次线性方程的通解为,利用衔接条件得,因此有,3)原问题的解为,四、全微分方程(数一),判别:,P,Q 在某单连通域D内有连续一阶偏导数,为全微分方程,则,求解步骤:,方法1 凑微分法;,方法2 利用积分与路径无关的条件.,1.求原函数 u(x,y),2.由 d u=0 知通解为 u(x,y)=C.,一、全微分方程,则称,为全微分方程.,例1.求解,解:因为,故这是全微分方程.,则有,因此方程的通解为,例2.求解,解:,这是一个全微分方程.,用凑微分法求通解.,将方程改写为,即,故原方程的通解为,或,可降阶高阶微分方程,第三节,一、型的微分方程,二、型的微分方程,三、型的微分方程,(数一、数二),一、,令,因此,即,同理可得,依次通过 n 次积分,可得含 n 个任意常数的通解.,型的微分方程,例1.,解:,型的微分方程,设,原方程化为一阶方程,设其通解为,则得,再一次积分,得原方程的通解,二、,例3.求解,解:,代入方程得,分离变量,积分得,利用,于是有,两端再积分得,利用,因此所求特解为,三、,型的微分方程,令,故方程化为,设其通解为,即得,分离变量后积分,得原方程的通解,例4.求解,代入方程得,两端积分得,(一阶线性齐次方程),故所求通解为,解:,例5.解初值问题,解:令,代入方程得,积分得,利用初始条件,根据,积分得,故所求特解为,得,为曲边的曲边梯形面积,上述两直线与 x 轴围成的三角形面,例6.,二阶可导,且,上任一点 P(x,y)作该曲线的,切线及 x 轴的垂线,区间 0,x 上以,解:,于是,在点 P(x,y)处的切线倾角为,满足的方程.,积记为,(99 考研),再利用 y(0)=1 得,利用,得,两边对 x 求导,得,定解条件为,方程化为,利用定解条件得,得,故所求曲线方程为,内容小结,可降阶微分方程的解法,降阶法,逐次积分,令,令,第四节,第十二章,高阶微分方程,1、高阶微分方程解的结构,2、常系数齐次线性微分方程,3、常系数非齐次线性微分方程,一、高阶线性微分方程解的结构,一、线性齐次方程解的结构,二、线性非齐次方程解的结构,n 阶线性微分方程的一般形式为,为二阶线性微分方程.,时,称为非齐次方程;,时,称为齐次方程.,复习:一阶线性方程,通解:,非齐次方程特解,齐次方程通解Y,证毕,一、线性齐次方程解的结构,是二阶线性齐次方程,的两个解,也是该方程的解.,证:,代入方程左边,得,(叠加原理),定理1.,说明:,不一定是所给二阶方程的通解.,例如,是某二阶齐次方程的解,也是齐次方程的解,并不是通解,但是,则,为解决通解的判别问题,下面引入函数的线性相关与,线性无关概念.,定义:,是定义在区间 I 上的,n 个函数,使得,则称这 n个函数在 I 上线性相关,否则称为线性无关.,例如,在(,)上都有,故它们在任何区间 I 上都线性相关;,又如,,若在某区间 I 上,则根据二次多项式至多只有两个零点,必需全为 0,可见,在任何区间 I 上都 线性无关.,若存在不全为 0 的常数,两个函数在区间 I 上线性相关与线性无关的充要条件:,线性相关,存在不全为 0 的,使,线性无关,常数,思考:,中有一个恒为 0,则,必线性,相关,线性无关,定理 2.,是二阶线性齐次方程的两个线,性无关特解,则,数)是该方程的通解.,例如,方程,有特解,且,常数,故方程的通解为,推论.,是 n 阶齐次方程,的 n 个线性无关解,则方程的通解为,二、线性非齐次方程解的结构,是二阶非齐次方程,的一个特解,Y(x)是相应齐次方程的通解,定理 3.,则,是非齐次方程的通解.,证:将,代入方程左端,得,是非齐次方程的解,又Y 中含有,两个独立任意常数,例如,方程,有特解,对应齐次方程,有通解,因此该方程的通解为,证毕,因而 也是通解.,定理4、若,是二阶非齐次方程,的特解,则,是齐次方程的解。,证明:,两式相减,定理 5.,分别是方程,的特解,是方程,的特解.(非齐次方程之解的叠加原理),定理3,定理4 均可推广到 n 阶线性非齐次方程.,定理 6.,是对应齐次方程的 n 个线性,无关特解,给定 n 阶非齐次线性方程,是非齐次方程的特解,则非齐次方程,的通解为,齐次方程通解,非齐次方程特解,常数,则该方程的通解是().,设线性无关函数,都是二阶非齐次线,性方程,的解,是任意,例1.,提示:,都是对应齐次方程的解,二者线性无关.(反证法可证),(89 考研),例2.,已知微分方程,个解,求此方程满足初始条件,的特解.,解:,是对应齐次方程的解,且,常数,因而线性无关,故原方程通解为,代入初始条件,故所求特解为,有三,例3、(10、二、三),设,是一阶线性齐次微分方程,的两个特解,若常数,使,的解,,则(),是该方程,是该方程对应的齐次方程的解,,A.,B.,C.,D.,二、常系数,齐次线性微分方程,基本思路:,求解常系数线性齐次微分方程,求特征方程(代数方程)之根,转化,二阶常系数齐次线性微分方程:,和它的导数只差常数因子,代入得,称为微分方程的特征方程,1.当,时,有两个相异实根,方程有两个线性无关的特解:,因此方程的通解为,(r 为待定常数),所以令的解为,则微分,其根称为特征根.,2.当,时,特征方程有两个相等实根,则微分方程有一个特解,设另一特解,(u(x)待定),代入方程得:,是特征方程的重根,取 u=x,则得,因此原方程的通解为,3.当,时,特征方程有一对共轭复根,这时原方程有两个复数解:,利用解的叠加原理,得原方程的线性无关特解:,因此原方程的通解为,小结:,特征方程:,实根,以上结论可推广到高阶常系数线性微分方程.,若特征方程含 k 重复根,若特征方程含 k 重实根 r,则其通解中必含对应项,则其通解中必含,对应项,特征方程:,推广:,例1.,的通解.,解:特征方程,特征根:,因此原方程的通解为,例2.求解初值问题,解:特征方程,有重根,因此原方程的通解为,利用初始条件得,于是所求初值问题的解为,例4.,的通解.,解:特征方程,特征根:,因此原方程通解为,例5.,解:特征方程:,特征根:,原方程通解:,(不难看出,原方程有特解,例6.,解:特征方程:,即,其根为,方程通解:,例7.,解:特征方程:,特征根为,则方程通解:,内容小结,特征根:,(1)当,时,通解为,(2)当,时,通解为,(3)当,时,通解为,可推广到高阶常系数线性齐次方程求通解.,为特解的 4 阶常系数线性齐次微分方程,并求其通解.,解:根据给定的特解知特征方程有根:,因此特征方程为,即,故所求方程为,其通解为,(小综合),三、常系数非齐次线性微分方程,一、,二、,二阶常系数线性非齐次微分方程:,根据解的结构定理,其通解为,求特解的方法,根据 f(x)的特殊形式,的待定形式,代入原方程比较两端表达式以确定待定系数.,待定系数法,一、,为实数,设特解为,其中 为待定多项式,代入原方程,得,(1)若 不是特征方程的根,则取,从而得到特解,形式为,为 m 次多项式.,Q(x)为 m 次待定系数多项式,(2)若 是特征方程的单根,为m 次多项式,故特解形式为,(3)若 是特征方程的重根,是 m 次多项式,故特解形式为,小结,对方程,此结论可推广到高阶常系数线性微分方程.,即,即,当 是特征方程的 k 重根 时,可设,特解,例1.,的一个特解.,解:本题,而特征方程为,不是特征方程的根.,设所求特解为,代入方程:,比较系数,得,于是所求特解为,例2.,的通解.,解:本题,特征方程为,其根为,对应齐次方程的通解为,设非齐次方程特解为,比较系数,得,因此特解为,代入方程得,所求通解为,例3.求解定解问题,解:本题,特征方程为,其根为,设非齐次方程特解为,代入方程得,故,故对应齐次方程通解为,原方程通解为,由初始条件得,于是所求解为,解得,二、,第二步 求出如下两个方程的特解,分析思路:,第一步 将 f(x)转化为,第三步 利用叠加原理求出原方程的特解,第四步 分析原方程特解的特点,对非齐次方程,则可设特解:,其中,为特征方程的 k 重根(k=0,1),上述结论也可推广到高阶方程的情形.,例4.,的一个特解.,解:本题,特征方程,故设特解为,不是特征方程的根,代入方程得,比较系数,得,于是求得一个特解,例5.,的通解.,解:,特征方程为,其根为,对应齐次方程的通解为,比较系数,得,因此特解为,代入方程:,所求通解为,为特征方程的单根,因此设非齐次方程特解为,例6.,解:(1)特征方程,有二重根,所以设非齐次方程特解为,(2)特征方程,有根,利用叠加原理,可设非齐次方程特解为,设下列高阶常系数线性非齐次方程的特解形式:,内容小结,为特征方程的 k(0,1,2)重根,则设特解为,为特征方程的 k(0,1)重根,则设特解为,3.上述结论也可推广到高阶方程的情形.,第五节,欧拉方程(数一),欧拉方程,常系数线性微分方程,第十二章,欧拉方程的算子解法:,则,计算繁!,则由上述计算可知:,用归纳法可证,于是欧拉方程,转化为常系数线性方程:,例1.,解:,则原方程化为,亦即,其根,则对应的齐次方程的通解为,特征方程,的通解为,换回原变量,得原方程通解为,设特解:,代入确定系数,得,例2.,解:,将方程化为,(欧拉方程),则方程化为,即,特征根:,设特解:,代入 解得 A=1,所求通解为,例3.,解:由题设得定解问题,则化为,特征根:,设特解:,代入得 A1,第六节,差分方程(数三),一、差分的概念,设,取非负整数,,表示函数值,是一个数列,关于函数,的一阶差分,例如:,二阶差分:,记做,二、差分的性质,三、差分方程,含未知函数及其差分的方程叫做差分方程.,使方程成为恒等式的函数.,通解,解中所含独立的任意常数的个数与方程,的阶数相同.,特解,差分方程的解,不含任意常数的解,阶:差分的最高阶,即下标最大最小值的差,例如:,一阶常系数线性差分方程,解法:,齐次,非齐次,齐次方程:,特征方程,即特征根为,对应的通解为,非齐次方程的通解=对应的齐次方程的通解+特解,(),令特解,当,取,当,取,(),令特解,当,取,当,取,(),令特解,例1、,求差分方程,满足,的特解。,解:,代入得,,由初值条件,例2、,求差分方程,解:,特征方程,齐次的通解,代入方程,得,所以,差分方程的通解为,微分方程应用补充,流程图分析及例题,1.折线积分,2.凑全微分,3.定积分,转为z的一阶线性,关于u一阶,二阶变系数,二阶,一阶,二阶常系数,解的结构,P338,P348,一、一阶微分方程求解,1.一阶标准类型方程求解,关键:辨别方程类型,掌握求解步骤,2.一阶非标准类型方程求解,(1)变量代换法 代换自变量,代换因变量,代换某组合式,(2)积分因子法 选积分因子,解全微分方程,四个标准类型:,可分离变量方程,齐次方程,线性方程,全微分方程,机动 目录 上页 下页 返回 结束,例1.求下列方程的通解,提示:(1),故为分离变量方程:,通解,机动 目录 上页 下页 返回 结束,方程两边同除以 x 即为齐次方程,令 y=u x,化为分,离变量方程.,调换自变量与因变量的地位,用线性方程通解公式求解.,化为,机动 目录 上页 下页 返回 结束,方法 1 这是一个齐次方程.,方法 2 化为微分形式,故这是一个全微分方程.,机动 目录 上页 下页 返回 结束,例2.求下列方程的通解:,提示:(1),令 u=x y,得,(2)将方程改写为,(贝努里方程),(分离变量方程),原方程化为,机动 目录 上页 下页 返回 结束,令 y=u t,(齐次方程),令 t=x 1,则,可分离变量方程求解,化方程为,机动 目录 上页 下页 返回 结束,变方程为,两边乘积分因子,用凑微分法得通解:,机动 目录 上页 下页 返回 结束,例3.,机动 目录 上页 下页 返回 结束,设F(x)f(x)g(x),其中函数 f(x),g(x)在(,+),内满足以下条件:,(1)求F(x)所满足的一阶微分方程;,(03考研),(2)求出F(x)的表达式.,解:(1),所以F(x)满足的一阶线性非齐次微分方程:,机动 目录 上页 下页 返回 结束,(2)由一阶线性微分方程解的公式得,于是,练习题:,(题3只考虑方法及步骤),P353 题2 求以,为通解的微分方程.,提示:,消去 C 得,P353 题3 求下列微分方程的通解:,提示:令 u=x y,化成可分离变量方程:,提示:这是一阶线性方程,其中,P353 题1,2,3(1),(2),(3),(4),(5),(9),(10),机动 目录 上页 下页 返回 结束,提示:可化为关于 x 的一阶线性方程,提示:为贝努里方程,令,提示:为全微分方程,通解,提示:可化为贝努里方程,令,微分倒推公式,机动 目录 上页 下页 返回 结束,原方程化为,即,则,故原方程通解,提示:令,机动 目录 上页 下页 返回 结束,二、两类二阶微分方程的解法,1.可降阶微分方程的解法 降阶法,令,令,逐次积分求解,机动 目录 上页 下页 返回 结束,2.二阶线性微分方程的解法,常系数情形,齐次,非齐次,代数法,欧拉方程,机动 目录 上页 下页 返回 结束,二阶常系数齐次线性微分方程求通解的一般步骤:,(1)写出相应的特征方程,(2)求出特征方程的两个根,(3)根据特征方程的两个根的不同情况,按照下列规则写出微分方程的通解,求解二阶常系数线性方程,非齐,通解,齐次通解,非齐特解,难点:如何求特解?,方法:待定系数法.,(3).上述结论也可推广到高阶方程的情形.,解答提示,P353 题2 求以,为通解的微分方程.,提示:由通解式可知特征方程的根为,故特征方程为,因此微分方程为,P353 题3 求下列微分方程的通解,提示:(6)令,则方程变为,机动 目录 上页 下页 返回 结束,特征根:,齐次方程通解:,令非齐次方程特解为,代入方程可得,思 考,若(7)中非齐次项改为,提示:,原方程通解为,特解设法有何变化?,机动 目录 上页 下页 返回 结束,P354 题4(2)求解,提示:令,则方程变为,积分得,利用,再解,并利用,定常数,思考,若问题改为求解,则求解过程中得,问开方时正负号如何确定?,机动 目录 上页 下页 返回 结束,P354 题8 设函数,在 r 0,内满足拉普拉斯方程,二阶可导,且,试将方程化为以 r 为自变,量的常微分方程,并求 f(r).,提示:,利用对称性,即,(欧拉方程),原方程可化为,机动 目录 上页 下页 返回 结束,解初值问题:,则原方程化为,通解:,利用初始条件得特解:,机动 目录 上页 下页 返回 结束,特征根:,例1.求微分方程,提示:,故通解为,满足条件,解满足,处连续且可微的解.,设特解:,代入方程定 A,B,得,得,机动 目录 上页 下页 返回 结束,处的衔接条件可知,解满足,故所求解为,其通解:,定解问题的解:,机动 目录 上页 下页 返回 结束,例2.,且满足方程,提示:,则,问题化为解初值问题:,最后求得,机动 目录 上页 下页 返回 结束,思考:设,提示:对积分换元,则有,解初值问题:,答案:,机动 目录 上页 下页 返回 结束,的解.,例3.,设函数,内具有连续二阶导,机动 目录 上页 下页 返回 结束,(1)试将 xx(y)所满足的微分方程,变换为 yy(x)所满足的微分方程;,(2)求变换后的微分方程满足初始条件,数,且,解:,上式两端对 x 求导,得:,(1)由反函数的导数公式知,(03考研),机动 目录 上页 下页 返回 结束,代入原微分方程得,(2)方程的对应齐次方程的通解为,设的特解为,代入得 A0,从而得的通解:,题 目录 上页 下页 返回 结束,由初始条件,得,故所求初值问题的解为,例4.,解:,欲向宇宙发射一颗人造卫星,为使其摆脱地球,引力,初始速度应不小于第二宇宙速度,试计算此速度.,设人造地球卫星质量为 m,地球质量为 M,卫星,的质心到地心的距离为 h,由牛顿第二定律得:,(G 为引力系数),则有初值问题:,又设卫星的初速度,机动 目录 上页 下页 返回 结束,代入原方程,得,两边积分得,利用初始条件,得,因此,注意到,机动 目录 上页 下页 返回 结束,为使,因为当h=R(在地面上)时,引力=重力,即,代入即得,这说明第二宇宙速度为,机动 目录 上页 下页 返回 结束,求质点的运动规,例5.,上的力 F 所作的功与经过的时间 t 成正比(比例系数,提示:,两边对 s 求导得:,牛顿第二定律,为 k),开方如何定+?,已知一质量为 m 的质点作直线运动,作用在质点,机动 目录 上页 下页 返回 结束,例6.一链条挂在一钉子上,启动时一端离钉子 8 m,另一端离钉子 12 m,如不计钉子对链条所产生的摩擦,力,求链条滑下来所需的时间.,解:建立坐标系如图.,设在时刻 t,链条较长一段,下垂 x m,又设链条线密度为常数,此时链条受力,由牛顿第二定律,得,机动 目录 上页 下页 返回 结束,由初始条件得,故定解问题的解为,解得,当 x=20 m 时,(s),微分方程通解:,思考:若摩擦力为链条 1 m 长的重量,定解问题的,数学模型是什么?,机动 目录 上页 下页 返回 结束,摩擦力为链条 1 m 长的重量 时的数学模型为,不考虑摩擦力时的数学模型为,此时链条滑下来所需时间为,机动 目录 上页 下页 返回 结束,练习题,从船上向海中沉放某种探测仪器,按探测,要求,需确定仪器的下沉深度 y 与下沉速度 v 之间的函,数关系.,设仪器在重力作用下从海平面由静止开始下沉,在下沉过程中还受到阻力和浮力作用,设仪器质量为 m,体积为B,海水比重为,仪器所受阻力与下沉速度成正,比,比例系数为 k(k 0),试建立 y 与 v 所满足的微分,方程,并求出函数关系式 y=y(v).(95考研),提示:建立坐标系如图.,质量 m体积 B,由牛顿第二定律,重力,浮力,阻力,注意:,机动 目录 上页 下页 返回 结束,初始条件为,用分离变量法解上述初值问题得,质量 m体积 B,得,机动 目录 上页 下页 返回 结束,有特,而对应齐次方程有解,微分方程的通解.,解:,故所给二阶非齐次方程为,方程化为,1.设二阶非齐次方程,一阶线性非齐次方程,机动 目录 上页 下页 返回 结束,故,再积分得通解,复习:一阶线性微分方程通解公式,机动 目录 上页 下页 返回 结束,2.,(1)验证函数,满足微分方程,(2)利用(1)的结果求幂级数,的和.,解:(1),机动 目录 上页 下页 返回 结束,(02考研),所以,(2)由(1)的结果可知所给级数的和函数满足,其特征方程:,特征根:,齐次方程通解为,设非齐次方程特解为,代入原方程得,故非齐次方程通解为,机动 目录 上页 下页 返回 结束,代入初始条件可得,故所求级数的和,机动 目录 上页 下页 返回 结束,

    注意事项

    本文(高等数学同济第五版(下)微分方程.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开