通信原理中的傅里叶级数.ppt
,第七节 傅里叶级数,一、三角级数 三角函数系的正交性,二、函数展开成傅里叶级数,三、正弦级数和余弦级数,一、三角级数及三角函数系的正交性,简单的周期运动:,(谐波函数),(A为振幅,复杂的周期运动:,令,得函数项级数,为角频率,为初相),(谐波迭加),称上述形式的级数为三角级数.,定理 1.组成三角级数的函数系,证:,同理可证:,正交,上的积分等于 0.,即其中任意两个不同的函数之积在,上的积分不等于 0.,且有,但是在三角函数系中两个相同的函数的乘积在,二、函数展开成傅里叶级数,定理 2.设 f(x)是周期为 2 的周期函数,且,右端级数可逐项积分,则有,证:由定理条件,对在,逐项积分,得,(利用正交性),类似地,用 sin k x 乘 式两边,再逐项积分可得,叶系数为系数的三角级数 称为,的傅里叶系数;,由公式 确定的,以,的傅里,的傅里叶级数.,称为函数,定理3(收敛定理,展开定理),设 f(x)是周期为2的,周期函数,并满足狄利克雷(Dirichlet)条件:,1)在一个周期内连续或只有有限个第一类间断点;,2)在一个周期内只有有限个极值点,则 f(x)的傅里叶级数收敛,且有,x 为间断点,其中,(证明略),为 f(x)的傅里叶系数.,x 为连续点,注意:函数展成傅里叶级数的条件比展成幂级数的条件低得多.,例1.,设 f(x)是周期为 2 的周期函数,它在,上的表达式为,解:先求傅里叶系数,将 f(x)展成傅里叶级数.,1)根据收敛定理可知,时,级数收敛于,2)傅氏级数的部分和逼近,说明:,f(x)的情况见右图.,例2.,上的表达式为,将 f(x)展成傅里叶级数.,解:,设 f(x)是周期为 2 的周期函数,它在,说明:当,时,级数收敛于,周期延拓,傅里叶展开,上的傅里叶级数,定义在,上的函数 f(x)的傅氏级数展开法,其它,例3.将函数,级数.,则,解:将 f(x)延拓成以,展成傅里叶,2为周期的函数 F(x),利用此展式可求出几个特殊的级数的和.,当 x=0 时,f(0)=0,得,说明:,设,已知,又,三、正弦级数和余弦级数,1.周期为2 的奇、偶函数的傅里叶级数,定理4.对周期为 2 的奇函数 f(x),其傅里叶级数为,周期为2的偶函数 f(x),其傅里叶级数为余弦级数,它的傅里叶系数为,正弦级数,它的傅里叶系数为,例4.设,的表达式为 f(x)x,将 f(x)展成傅里叶级数.,是周期为2 的周期函数,它在,解:若不计,周期为 2 的奇函数,因此,n1,根据收敛定理可得 f(x)的正弦级数:,级数的部分和,n2,n3,n4,逼近 f(x)的情况见右图.,n5,例5.将周期函数,展成傅里叶级数,其,中E 为正常数.,解:,是周期为2 的,周期偶函数,因此,2.在0,上的函数展成正弦级数与余弦级数,周期延拓 F(x),f(x)在 0,上展成,周期延拓 F(x),余弦级数,奇延拓,偶延拓,正弦级数,f(x)在 0,上展成,例6.将函数,分别展成正弦级,数与余弦级数.,解:先求正弦级数.,去掉端点,将 f(x)作奇周期延拓,注意:,在端点 x=0,级数的和为0,与给定函数,因此得,f(x)=x+1 的值不同.,再求余弦级数.,将,则有,作偶周期延拓,说明:令 x=0 可得,即,作业:p-315习题12-7 1(1),(3);2(2);5,