欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    统计学─从数据到结论第八章异方差.ppt

    • 资源ID:6193882       资源大小:490KB        全文页数:60页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    统计学─从数据到结论第八章异方差.ppt

    第8章 异方差性,一、异方差的概念二、异方差的类型三、实际经济问题中的异方差性四、异方差性的后果五、异方差性的检验六、异方差的修正七、案例,对于模型,如果出现,即对于不同的样本点,随机误差项的方差不再是常数,而互不相同,则认为出现了异方差性(Heteroskedasticity)。,一、异方差的概念,.,x,x1,x2,y,f(y|x),Example of Heteroskedasticity,x3,.,.,E(y|x)=b0+b1x,二、异方差的类型,同方差:i2=常数 f(Xi)异方差:i2=f(Xi),异方差一般可归结为三种类型:(1)单调递增型:i2随X的增大而增大(2)单调递减型:i2随X的增大而减小(3)复 杂 型:i2与X的变化呈复杂形式,三、实际经济问题中的异方差性,例:截面资料下研究居民家庭的储蓄行为:Yi=0+1Xi+iYi:第i个家庭的储蓄额 Xi:第i个家庭的可支配收入。,高收入家庭:储蓄的差异较大 低收入家庭:储蓄则更有规律性,差异较小i的方差呈现单调递增型变化,例,以绝对收入假设为理论假设、以截面数据为样本建立居民消费函数:Ci=0+1Yi+I,将居民按照收入等距离分成n组,取组平均数为样本观测值。,一般情况下,居民收入服从正态分布:中等收入组人数多,两端收入组人数少。而人数多的组平均数的误差小,人数少的组平均数的误差大。所以样本观测值的观测误差随着解释变量观测值的不同而不同,往往引起异方差性。,四、异方差性的后果,计量经济学模型一旦出现异方差性,如果仍采用OLS估计模型参数,会产生下列不良后果:,1.参数估计量非有效,OLS估计量仍然具有无偏性,但不具有有效性,因为在有效性证明中利用了 E()=2I,而且,在大样本情况下,尽管参数估计量具有一致性,但仍然不具有渐近有效性。,2.变量的显著性检验失去意义,变量的显著性检验中,构造了t统计量,其他检验也是如此。,3.模型的预测失效,一方面,由于上述后果,使得模型不具有良好的统计性质;,所以,当模型出现异方差性时,参数OLS估计值的变异程度增大,从而造成对Y的预测误差变大,降低预测精度,预测功能失效。,五、异方差性的检验,检验思路:,由于异方差性就是相对于不同的解释变量观测值,随机误差项具有不同的方差。那么:检验异方差性,也就是检验随机误差项的方差与解释变量观测值之间的相关性及其相关的“形式”。,问题在于用什么来表示随机误差项的方差,一般的处理方法:,几种异方差的检验方法:,1.图示法,(1)用X-Y的散点图进行判断 看是否存在明显的散点扩大、缩小或复杂型趋势(即不在一个固定的带型域中),看是否形成一斜率为零的直线,2.帕克(Park)检验与戈里瑟(Gleiser)检验,基本思想:偿试建立方程:,或,选择关于变量X的不同的函数形式,对方程进行估计并进行显著性检验,如果存在某一种函数形式,使得方程显著成立,则说明原模型存在异方差性。如:帕克检验常用的函数形式:,或,若在统计上是显著的,表明存在异方差性。,3.戈德菲尔德-匡特(Goldfeld-Quandt)检验,G-Q检验以F检验为基础,适用于样本容量较大、异方差递增或递减的情况。,G-Q检验的思想:先将样本一分为二,对子样和子样分别作回归,然后利用两个子样的残差平方和之比构造统计量进行异方差检验。由于该统计量服从F分布,因此假如存在递增的异方差,则F远大于1;反之就会等于1(同方差)、或小于1(递减方差)。,Goldfeld-Quant检验的几何意义,G-Q检验的步骤:将n对样本观察值(Xi,Yi)按观察值Xi的大小排队;将序列中间的c=n/4个观察值除去,并将剩下的观察值划分为较小与较大的相同的两个子样本,每个子样样本容量均为(n-c)/2;对每个子样分别进行OLS回归,并计算各自的残差平方和;,在同方差性假定下,构造如下满足F分布的统计量,给定显著性水平,确定临界值F(v1,v2),若F F(v1,v2),则拒绝同方差性假设,表明存在异方差。当然,还可根据两个残差平方和对应的子样的顺序判断是递增型异方差还是递减异型方差。,4.怀特(White)检验,怀特检验不需要排序,且适合任何形式的异方差。怀特检验的基本思想与步骤(以二元为例):,然后做如下辅助回归,可以证明,在同方差假设下:,(*),R2为(*)的可决系数,h为(*)式解释变量的个数,,表示渐近服从某分布。,1、White 检验的具体步骤,White检验 步骤,(检验各回归系数是否为零。等于零,不存在异方差),2、White 检验在EViews上的实现,1)Ls Y C X1 X22)点击 View/residual test/White/回车;3)在出现的对话框中,选择 no cross terms(没有交叉项)/回车或 cross terms(有交叉项)/回车 4)出现输出框(比模型输出框多2行)Test直接给出了相关的统计量(F-statistic和Obs*R-squared),假定模型有三个变量 那么分别观测 对,的拟合优度,据以判断残差平方与那一些变量有关。,注意:辅助回归仍是检验与解释变量可能的组合的显著性,因此,辅助回归方程中还可引入解释变量的更高次方。如果存在异方差性,则表明确与解释变量的某种组合有显著的相关性,这时往往显示出有较高的可决系数以及某一参数的t检验值较大。当然,在多元回归中,由于辅助回归方程中可能有太多解释变量,从而使自由度减少,有时可去掉交叉项。,六、异方差的修正,模型检验出存在异方差性,可用加权最小二乘法(Weighted Least Squares,WLS)进行估计。,加权最小二乘法的基本思想:加权最小二乘法是对原模型加权,使之变成一个新的不存在异方差性的模型,然后采用OLS估计其参数。,例如,如果对一多元模型,经检验知:,在采用OLS方法时:对较小的残差平方ei2赋予较大的权数;对较大的残差平方ei2赋予较小的权数。,一般情况下:,对于模型Y=X+,存在:,即存在异方差性。,W是一对称正定矩阵,存在一可逆矩阵D使得 W=DD,用D-1左乘 Y=X+两边,得到一个新的模型:,该模型具有同方差性。因为,这就是原模型Y=X+的加权最小二乘估计量,是无偏、有效的估计量。,这里权矩阵为D-1,它来自于原模型残差项的方差-协方差矩阵2W。,如何得到2W?,从前面的推导过程看,它来自于原模型残差项的方差协方差矩阵。因此仍对原模型进行OLS估计,得到随机误差项的近似估计量i,以此构成权矩阵的估计量,即,这时可直接以,作为权矩阵。,加权最小二乘法在EViews上的实现,例:假定以序列XH为权数,在EViews中,可以在LS命令中 使用加权处理方式来完成加权的最小二乘法估计:LS(W=XH)Y C X,EViews中有加权最小二乘法的命令LS(W=权数名)Y C X,注意:,在实际操作中人们通常采用如下的经验方法:不对原模型进行异方差性检验,而是直接选择加权最小二乘法,尤其是采用截面数据作样本时。如果确实存在异方差,则被有效地消除了;如果不存在异方差性,则加权最小二乘法等价于普通最小二乘法。,在计量经济学实践中,计量经济学家偏爱使用对数变换解决问题,往往一开始就把数据化为对数形式,再用对数形式数据来构成模型,进行回归估计与分析。这是因为:对数形式可以减少异方差和自相关的程度。,对数变换的效果减少差异,三、模型的对数变换,利用EViews对模型进行对数变换,genr LY=LOG(Y),genr LX=LOG(X),LS LY C LX,例,Variance with Heteroskedasticity异方差存在时的方差,Variance with Heteroskedasticity异方差存在时的方差,Variance with Heteroskedasticity异方差存在时的方差,Variance with Heteroskedasticity异方差存在时的方差,The square root of is called:开平方被称为Heteroskedasticity-robust standard error,or对异方差稳健的标准误,或White standard error,orWhite标准误,或Huber standard error,orHuber标准误,或Eicker standard errors,orEicker 标准误,Robust Standard Errors稳健标准误,Now the robust standard errors can be used for inference稳健标准误可以用来进行推断。Sometimes the estimated variance is corrected for degrees of freedom by multiplying by n/(n k 1)有时可以将估计的方差乘以n/(n k 1)来修正自由度 As n its all the same,though.当n 时,没有区别。,Example:robust se versus usual se例子:稳健标准误与常规标准误,We estimate the model in wage equation but report the heteroskedasticity-robust standard errors along with the usual OLS standard errors:,Observation in This Example,First,any variable that was statistically significant using the usual t statistic is still statistically significant using the heteroskedasticity-robust t statistic.This is because the two sets of standard errors are not very different.The robust standard errors can be either larger or smaller than the usual standard errors.All we have done is report,along with the usual standard errors,those that are valid(asymptotically)whether or not heteroskedasticity is present.No test is performed yet.,Example:robust se versus usual se例子:稳健标准误与常规标准误,稳健标准误可能比常规标准误大,也可能小。但是实证中常常发现稳健标准误要大些。如果这两种标准误的差异很大,那么统计推断的结论可能有很大差异。,Now,why care about the usual se?为何要考虑常规标准误?,如果稳健标准误无论异方差存在与否都是适用的,为什么我们还需要常规标准误?我们应当注意到,稳健标准误的适用性依赖于大样本。,Robust Standard Errors 稳健标准误,如果是小样本同方差情形,那么常规的t统计量精确地服从t 分布,但是这并不适用于稳健标准误,因此,在这种情况下使用稳健标准误就可能导致推断错误。在大样本情形下,特别是应用截面数据的时候,我们推荐报告稳健标准误(或同时报告常规的标准误)。,七、案例中国农村居民人均消费函数,例 中国农村居民人均消费支出主要由人均纯收入来决定。农村人均纯收入包括:(1)从事农业经营的收入;(2)包括从事其他产业的经营性收入(3)工资性收入;(4)财产收入;(4)转移支付收入。考察从事农业经营的收入(X1)和其他收入(X2)对中国农村居民消费支出(Y)增长的影响:,普通最小二乘法的估计结果:,异方差检验,进一步的统计检验,(1)G-Q检验,将原始数据按X2排成升序,去掉中间的7个数据,得两个容量为12的子样本。对两个子样本分别作OLS回归,求各自的残差平方和RSS1和RSS2:,子样本1:,(3.18)(4.13)(0.94)R2=0.7068,RSS1=0.0648,子样本2:,(0.43)(0.73)(6.53)R2=0.8339,RSS2=0.2729,计算F统计量:F=RSS2/RSS1=0.2792/0.0648=4.31,查表 给定=5%,查得临界值 F0.05(9,9)=2.97判断 F F0.05(9,9)否定两组子样方差相同的假设,从而该总体随机项存在递增异方差性。,(2)怀特检验,作辅助回归:,(-0.04(0.10)(0.21)(-0.12)(1.47),(-1.11)R2=0.4638,似乎没有哪个参数的t检验是显著的。但 n R2=31*0.4638=14.38=5%下,临界值 20.05(5)=11.07,拒绝同方差性。,去掉交叉项后的辅助回归结果,(1.36)(-0.64)(064)(-2.76)(2.90)R2=0.4374,X2项与X2的平方项的参数的t检验是显著的,且 n R2=31 0.4374=13.56,=5%下,临界值 20.05(4)=9.49,拒绝同方差的原假设。,结束,

    注意事项

    本文(统计学─从数据到结论第八章异方差.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开