欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    电磁场与电磁波第一章复习.ppt

    • 资源ID:6188497       资源大小:223.50KB        全文页数:18页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    电磁场与电磁波第一章复习.ppt

    标量场的梯度:,矢量场的散度:,矢量场的旋度:,高斯散度定理:,斯托克斯定理:,内容复习,散度处处为零的矢量场称为无散场,旋度处处为零的矢量场称为无旋场。,无散场和无旋场,两个重要公式:,左式表明,任一矢量场 A 的旋度的散度一定等于零。因此,任一无散场可以表示为另一矢量场的旋度,或者说,任何旋度场一定是无散场。,右式表明,任一标量场 的梯度的旋度一定等于零。因此,任一无旋场一定可以表示为一个标量场的梯度,或者说,任何梯度场一定是无旋场。,1.6 三种常用坐标系,直角坐标系,直角坐标(x,y,z),柱坐标系,圆柱坐标(r,z),球坐标系,球坐标(r,),已知矢量 A 在圆柱坐标系和球坐标系中可分别表示为,式中 a,b,c 均为常数,A 是常矢量吗?,柱坐标系和球坐标系内算子及梯度、散度、旋度的表达式,请参阅附录1。,格林定理,设任意两个标量场 及,若在区域 V 中具有连续的二阶偏导数,如下图示。,那么,可以证明该两个标量场 及 满足下列等式,根据方向导数与梯度的关系,上式又可写成,式中S 为包围V 的闭合曲面,为标量场 在 S 表面的外法线 en 方向上的偏导数。,上两式称为标量第一格林定理。,基于上式还可获得下列两式:,上两式称为标量第二格林定理。,设任意两个矢量场 P 与 Q,若在区域 V 中具有连续的二阶偏导数,那么,可以证明该矢量场 P 及 Q 满足下列等式,式中S 为包围V 的闭合曲面,面元 dS 的方向为S 的外法线方向,上式称为矢量第一格林定理。,基于上式还可获得下式:,此式称为矢量第二格林定理。,无论何种格林定理,都是说明区域 V 中的场与边界 S 上的场之间的关系。因此,利用格林定理可以将区域中场的求解问题转变为边界上场的求解问题。,此外,格林定理说明了两种标量场或矢量场之间应该满足的关系。因此,如果已知其中一种场的分布特性,即可利用格林定理求解另一种场的分布特性。,格林定理广泛地用于电磁理论。,矢量场的唯一性定理,位于某一区域中的矢量场,当其散度、旋度以及边界上场量的切向分量或法向分量给定后,则该区域中的矢量场被惟一地确定。,已知散度和旋度代表产生矢量场的源,可见唯一性定理表明,矢量场被其源及边界条件共同决定的。,若矢量场 F(r)在无限区域中处处是单值的,且其导数连续有界,源分布在有限区域 V 中,则当矢量场的散度及旋度给定后,该矢量场 F(r)可以表示为,1.6.6 亥姆霍兹定理,式中,可见,该定理表明任一矢量场均可表示为一个无旋场与一个无散场之和。矢量场的散度及旋度特性是研究矢量场的首要问题。,习题解答,1.1 解:,1.6 解:,1.8 解:,1.12 解:,因为,所以,1.15 解,在点M的环量面密度,1.16 解:,1.18 解:,1.20 解:见课本 P11。,

    注意事项

    本文(电磁场与电磁波第一章复习.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开