电工学(下册第七版)电子技术模拟部分.ppt
电 子 技 术 基 础,模拟部分1419章数字部分2023章,1 绪 论,信号:信息的载体,随时间变化的某种物理量。,电 子 信 号,对于信号我们并不陌生,如刚才铃声声信号,表示该上课了;十字路口红绿灯光信号,指挥交通;电视机天线接收的声音,图像信息电信号;信号按物理属性分为:电信号和非电信号。它们可以相互转换。电信号容易产生,便于控制,易于处理。本课程仅讨论电信号简称“信号”。电信号的基本形式:随时间变化的电压或电流。描述信号的常用方法:(1)表示为时间的函数(2)信号的图形表示-波形,信号的波形:,电 子 信 号,v(t)=Vmsin(t+),2/,信号的数学表达式:,电 子 信 号,信号的频谱:信号幅值随频率变化的分布。,电 子 信 号,信号的频谱:信号幅值随频率变化的分布。,电 子 信 号,方波波形,信号按时间和幅度是否连续分为:,模拟信号:时间和数值都连续 数字信号:时间和数值不一定连续,电 子 信 号,信号按时间和幅度是否连续分为:,模拟信号:时间和数值都连续 数字信号:时间和数值不一定连续,电 子 信 号,14.3 二极管,14.4 稳压二极管,14.5 双极型晶体管,14.2 PN结及其单向导电性,14.1 半导体的导电特性,14.6 光电器件,本章要求:1.理解PN结的单向导电性,三极管的电流分配和 电流放大作用;2.了解二极管、稳压管和三极管的基本构造、工 作原理和特性曲线,理解主要参数的意义;3.会分析含有二极管的电路。,第14章 半导体器件,学会用工程观点分析问题,就是根据实际情况,对器件的数学模型和电路的工作条件进行合理的近似,以便用简便的分析方法获得具有实际意义的结果。对电路进行分析计算时,只要能满足技术指标,就不要过分追究精确的数值。器件是非线性的、特性有分散性、RC 的值有误差、工程上允许一定的误差、采用合理估算的方法。,对于元器件,重点放在特性、参数、技术指标和正确使用方法,不要过分追究其内部机理。讨论器件的目的在于应用。,14.1 半导体的导电特性,半导体的导电特性:,(可做成温度敏感元件,如热敏电阻)。,掺杂性:往纯净的半导体中掺入某些杂质,导电 能力明显改变(可做成各种不同用途的半导 体器件,如二极管、三极管和晶闸管等)。,光敏性:当受到光照时,导电能力明显变化(可做 成各种光敏元件,如光敏电阻、光敏二极 管、光敏三极管等)。,热敏性:当环境温度升高时,导电能力显著增强,14.1.1 本征半导体,完全纯净的、具有晶体结构的半导体,称为本征半导体。,晶体中原子的排列方式,硅单晶中的共价健结构,共价健,共价键中的两个电子,称为价电子。,价电子,价电子在获得一定能量(温度升高或受光照)后,即可挣脱原子核的束缚,成为自由电子(带负电),同时共价键中留下一个空位,称为空穴(带正电)。,本征半导体的导电机理,这一现象称为本征激发。,空穴,温度愈高,晶体中产生的自由电子便愈多。,自由电子,在外电场的作用下,空穴吸引相邻原子的价电子来填补,而在该原子中出现一个空穴,其结果相当于空穴的运动(相当于正电荷的移动)。,当半导体两端加上外电压时,在半导体中将出现两部分电流(1)自由电子作定向运动 电子电流(2)价电子递补空穴 空穴电流,注意:(1)本征半导体中载流子数目极少,其导电性能很差,在半导体中,同时存在电子导电和空穴导电,这是与金属导电的本质区别;(2)温度愈高,载流子的数目愈多,半导体的导电性能也就愈好。所以,温度对半导体器件性能影响很大。,自由电子和空穴都称为载流子。*自由电子和空穴成对地产生的同时,又不断复合。在一定温度下,载流子的产生和复合达到动态平衡,半导体中载流子便维持一定的数目。,14.1.2 N型半导体和 P 型半导体,掺杂后自由电子数目大量增加,自由电子导电成为这种半导体的主要导电方式,称为电子半导体或N型半导体。,掺入五价元素,多余电子,磷原子,在常温下即可变为自由电子,失去一个电子变为正离子,在本征半导体中掺入微量的杂质(某种元素),形成杂质半导体。,在N 型半导体中自由电子是多数载流子,空穴是少数载流子。,14.1.2 N型半导体和 P 型半导体,掺杂后空穴数目大量增加,空穴导电成为这种半导体的主要导电方式,称为空穴半导体或 P型半导体。,掺入三价元素,在 P 型半导体中空穴是多数载流子,自由电子是少数载流子。,硼原子,接受一个电子变为负离子,空穴,无论N型或P型半导体都是中性的,对外不显电性。,1.在杂质半导体中多子的数量与(a.掺杂浓度、b.温度)有关。,2.在杂质半导体中少子的数量与(a.掺杂浓度、b.温度)有关。,3.当温度升高时,少子的数量(a.减少、b.不变、c.增多)。,a,b,c,4.在外加电压的作用下,P 型半导体中的电流主要是,N 型半导体中的电流主要是。(a.电子电流、b.空穴电流),b,a,14.2 PN结及单向导电特性,14.2.1 PN结的形成,多子的扩散运动,少子的漂移运动,浓度差,P 型半导体,N 型半导体,内电场越强,漂移运动越强,而漂移使空间电荷区变薄。,扩散的结果使空间电荷区变宽。,空间电荷区也称 PN 结,扩散和漂移这一对相反的运动最终达到动态平衡,空间电荷区的厚度固定不变。,形成空间电荷区,14.2.2 PN结的单向导电性,1.PN 结加正向电压(正向偏置),PN 结变窄,P接正、N接负,IF,内电场被削弱,多子的扩散加强,形成较大的扩散电流。,PN 结加正向电压时,PN结变窄,正向电流较大,正向电阻较小,PN结处于导通状态。,2.PN 结加反向电压(反向偏置),P接负、N接正,PN 结变宽,2.PN 结加反向电压(反向偏置),内电场被加强,少子的漂移加强,由于少子数量很少,形成很小的反向电流。,IR,P接负、N接正,温度越高少子的数目越多,反向电流将随温度增加。,PN 结加反向电压时,PN结变宽,反向电流较小,反向电阻较大,PN结处于截止状态。,14.3 二极管,14.3.1 基本结构,(a)点接触型,(b)面接触型,结面积小、结电容小、正向电流小。用于检波和变频等高频电路。,结面积大、正向电流大、结电容大,用于工频大电流整流电路。,(c)平面型 用于集成电路制作工艺中。PN结结面积可大可小,用于高频整流和开关电路中。,图 1 12 半导体二极管的结构和符号,14.3 二极管,二极管的结构示意图,常见的二极管,我国半导体器件型号命名方法,半导体器件的型号由五部分组成:第一部分:用数字表示器件的电极数目第二部分:用字母表示器件的材料和极性第三部分:用字母表示器件的类型第四部分:用数字表示器件的序号第五部分:用字母表示规格号,二极管的型号,2AP7的含义:,N型锗材料普通二极管,半导体器件的型号命名:,2CW56A的含义:,N型硅材料稳压二极管,二极管的型号,半导体器件的型号命名:,2 C W 56 A,14.3.2 伏安特性,硅管0.5V锗管0.1V,反向击穿电压U(BR),导通压降,外加电压大于死区电压二极管才能导通。,外加电压大于反向击穿电压二极管被击穿,失去单向导电性。,正向特性,反向特性,特点:非线性,硅0.60.8V锗0.20.3V,死区电压,反向电流在一定电压范围内保持常数。,14.3.3 主要参数,1.最大整流电流 IOM,二极管长期使用时,允许流过二极管的最大正向平均电流。,2.反向工作峰值电压URWM,是保证二极管不被击穿而给出的反向峰值电压,一般是二极管反向击穿电压UBR的一半或三分之二。二极管击穿后单向导电性被破坏,甚至过热而烧坏。,3.反向峰值电流IRM,指二极管加最高反向工作电压时的反向电流。反向电流大,说明管子的单向导电性差,IRM受温度的影响,温度越高反向电流越大。硅管的反向电流较小,锗管的反向电流较大,为硅管的几十到几百倍。,二极管的单向导电性,1.二极管加正向电压(正向偏置,阳极接正、阴极接负)时,二极管处于正向导通状态,二极管正向电阻较小,正向电流较大。,2.二极管加反向电压(反向偏置,阳极接负、阴极接正)时,二极管处于反向截止状态,二极管反向电阻较大,反向电流很小。,3.外加电压大于反向击穿电压二极管被击穿,失去单向导电性。,4.二极管的反向电流受温度的影响,温度愈高反向电流愈大。,二极管电路分析举例,定性分析:判断二极管的工作状态,导通截止,分析方法:将二极管断开,分析二极管两端电位的高低或所加电压UD的正负。,若 V阳 V阴或 UD为正(正向偏置),二极管导通若 V阳 V阴或 UD为负(反向偏置),二极管截止,若二极管是理想的,正向导通时正向管压降为零,反向截止时二极管相当于断开。,二极管的应用举例1:,在这里,二极管起检波作用。,电路如图,求:UAB,V阳=6 V V阴=12 V V阳V阴 二极管导通若忽略管压降,二极管可看作短路,UAB=6V否则,UAB低于6V一个管压降,为6.3或6.7V,例2:,取 B 点作参考点,断开二极管,分析二极管阳极和阴极的电位。,在这里,二极管起钳位作用。,两个二极管的阴极接在一起取 B 点作参考点,断开二极管,分析二极管阳极和阴极的电位。,V1阳=6 V,V2阳=0 V,V1阴=V2阴=12 VUD1=6V,UD2=12V UD2 UD1 D2 优先导通,D1截止。若忽略管压降,二极管可看作短路,UAB=0 V,例3:,D1承受反向电压为6 V,流过 D2 的电流为,求:UAB,在这里,D2 起钳位作用,D1起隔离作用。,ui 8V,二极管导通,可看作短路 uo=8V ui 8V,二极管截止,可看作开路 uo=ui,已知:二极管是理想的,试画出 uo 波形。,8V,例4:,二极管的用途:整流、检波、限幅、钳位、开关、元件保护、温度补偿等。,参考点,二极管阴极电位为 8 V,14.4 稳压二极管,1.符号,UZ,IZ,IZM,UZ,IZ,2.伏安特性,稳压管正常工作时加反向电压,使用时要加限流电阻,稳压管反向击穿后,电流变化很大,但其两端电压变化很小,利用此特性,稳压管在电路中可起稳压作用。,3.主要参数,(1)稳定电压UZ 稳压管正常工作(反向击穿)时管子两端的电压。,(2)电压温度系数 环境温度每变化1C引起稳压值变化的百分数。,(3)动态电阻,(4)稳定电流 IZ、最大稳定电流 IZM,(5)最大允许耗散功率 PZM=UZ IZM,rZ愈小,曲线愈陡,稳压性能愈好。,P15例题14.4.1,14.5 双极型晶体管(半导体三极管),14.5.1 基本结构,晶体管的三位发明人:巴丁、肖克莱、布拉顿,1947年12月23日 第一个晶体管 NPN Ge晶体管,获得1956年Nobel物理奖,半导体三极管图片,晶体管的结构示意图和表示符号,(a)NPN型晶体管;,(b)PNP型晶体管,基区:最薄,掺杂浓度最低,发射区:掺杂浓度最高,发射结,集电结,结构特点:,集电区:面积最大,14.5.2 电流分配和放大原理,1.三极管放大的外部条件,发射结正偏、集电结反偏,PNP发射结正偏 VBVE集电结反偏 VCVB,从电位的角度看:NPN 发射结正偏 VBVE集电结反偏 VCVB,晶体管电流放大的实验电路,设 EC=6 V,改变可变电阻 RB,则基极电流 IB、集电极电流 IC 和发射极电流 IE 都发生变化,测量结果如下表:,2.各电极电流关系及电流放大作用,晶体管电流测量数据,结论:,(1)IE=IB+IC 符合基尔霍夫定律(2)IC IB,IC IE(3)IC IB,把基极电流的微小变化能够引起集电极电流较大变化的特性称为晶体管的电流放大作用。,实质:用一个微小电流的变化去控制一个较大电流的变化,是CCCS器件。,(a)NPN 型晶体管;,电流方向和发射结与集电结的极性,(4)要使晶体管起放大作用,发射结必须正向 偏置,集电结必须反向偏置。,(b)PNP 型晶体管,3.三极管内部载流子的运动规律,Rb,集电结反偏,少子漂移形成集电结反向饱和电流ICBO,EB,Rc,EC,发射结正偏,发射区电子向基区扩散,形成发射结电子扩散电流IEN,部分电子与基区的空穴复合形成基区复合电流IBE,大多数电子扩散到集电结边界,集电结反偏,从基区扩散到集电结边缘的电子漂移过集电结被集电区收集形成电流ICE,3.三极管内部载流子的运动规律,IC=ICE+ICBO ICE,IB=IBE-ICBO IBE,ICE 与 IBE 之比称为共发射极电流放大倍数,集射极穿透电流,温度ICEO,(常用公式),若IB=0,则 IC ICE0,14.5.3 特性曲线,即管子各电极电压与电流的关系曲线,是管子内部载流子运动的外部表现,反映了晶体管的性能,是分析放大电路的依据。,为什么要研究特性曲线:(1)直观地分析管子的工作状态(2)合理地选择偏置电路的参数,设计性能良好的电路,重点讨论应用最广泛的共发射极接法的特性曲线,发射极是输入回路、输出回路的公共端,共发射极电路,输入回路,输出回路,测量晶体管特性的实验线路,1.输入特性,特点:非线性,正常工作时发射结电压:NPN型硅管 UBE 0.6 0.7VPNP型锗管 UBE 0.2 0.3V,3DG100晶体管的输入特性曲线,死区电压:硅管0.5V,锗管0.1V。,2.输出特性,共发射极电路,3DG100晶体管的输出特性曲线,在不同的 IB下,可得出不同的曲线,所以晶体管的输出特性曲线是一组曲线。,2.输出特性,晶体管有三种工作状态,因而输出特性曲线分为三个工作区,3DG100晶体管的输出特性曲线,(1)放大区,在放大区 IC=IB,也称为线性区。,在放大区,发射结处于正向偏置、集电结处于反向偏置,晶体管工作于放大状态。,对 NPN 型管而言,应使 UBE 0,UBC UBE。,IC/mA,UCE/V,100 A 80A 60 A 40 A 20 A,O 3 6 9 12,4,2.3,1.5,3,2,1,IB=0,(2),截止区,对NPN型硅管,当UBE0.5V时,即已开始截止,为使晶体管可靠截止,常使 UBE 0。截止时,集电结也处于反向偏置(UBC 0),此时,IC 0,UCE UCC。,IB=0 的曲线以下的区域称为截止区。,IB=0 时,IC=ICEO(很小)。(ICEO0.001mA),截止区,IC/mA,UCE/V,100 A 80A 60 A 40 A 20 A,O 3 6 9 12,4,2.3,1.5,3,2,1,IB=0,(3)饱和区,在饱和区,IB IC,发射结处于正向偏置,集电结也处于正偏。深度饱和时,硅管UCES 0.3V,锗管UCES 0.1V。IC UCC/RC。,当 UCE 0),晶体管工作于饱和状态。,饱和区,晶体管三种工作状态的电压和电流,(a)放大,(b)截止,(c)饱和,当晶体管饱和时,UCE 0,发射极与集电极之间如同一个开关的接通,其间电阻很小;当晶体管截止时,IC 0,发射极与集电极之间如同一个开关的断开,其间电阻很大,可见,晶体管除了有放大作用外,还有开关作用。,晶体管结电压的典型值,14.5.4 主要参数,表示晶体管特性的数据称为晶体管的参数,晶体管的参数也是设计电路、选用晶体管的依据。,例:=50,USC=12V,RB=70k,RC=6k 当USB=-2V,2V,5V时,晶体管的静态工作点Q位于哪个区?,当USB=-2V时:,IB=0,IC=0,IC最大饱和电流:,Q位于截止区,例:=50,USC=12V,RB=70k,RC=6k 当USB=-2V,2V,5V时,晶体管的静态工作点Q位于哪个区?,IC ICmax(=2mA),Q位于放大区。,USB=2V时:,USB=5V时:,例:=50,USC=12V,RB=70k,RC=6k 当USB=-2V,2V,5V时,晶体管的静态工作点Q位于哪个区?,Q 位于饱和区,此时IC 和IB 已不是 倍的关系。,14.5.4 主要参数,1.电流放大系数,,直流电流放大系数,交流电流放大系数,当晶体管接成发射极电路时,,注意:,和 的含义不同,但在特性曲线近于平行等距并且ICE0 较小的情况下,两者数值接近。,常用晶体管的 值在20 200之间。,由于晶体管的输出特性曲线是非线性的,只有在特性曲线的近于水平部分,IC随IB成正比变化,值才可认为是基本恒定的。,例:在UCE=6 V时,在 Q1 点IB=40A,IC=1.5mA;在 Q2 点IB=60 A,IC=2.3mA。,在以后的计算中,一般作近似处理:=。,在 Q1 点,有,由 Q1 和Q2点,得,2.集-基极反向截止电流 ICBO,ICBO是由少数载流子的漂移运动所形成的电流,受温度的影响大。温度ICBO,3.集-射极反向截止电流(穿透电流)ICEO,ICEO受温度的影响大。温度ICEO,所以IC也相应增加。三极管的温度特性较差。,一般希望 ICEO尽量小,小功率硅管的ICEO在几微安以下,小功率锗管的ICEO约几十微安,4.集电极最大允许电流 ICM,5.集-射极反向击穿电压U(BR)CEO,集电极电流 IC上升会导致三极管的值的下降,当值下降到正常值的三分之二时的集电极电流即为 ICM。,当集射极之间的电压UCE 超过一定的数值时,三极管就会被击穿。手册上给出的数值是25C、基极开路时的击穿电压U(BR)CEO。,6.集电极最大允许耗散功耗PCM,PCM取决于三极管允许的温升,消耗功率过大,温升过高会烧坏三极管。PC PCM=IC UCE,硅管允许结温约为150C,锗管约为7090C。,由三个极限参数可画出三极管的安全工作区,ICUCE=PCM,安全工作区,晶体管参数与温度的关系,1.温度每增加10C,ICBO增大一倍。硅管优于 锗管。,2.温度每升高1C,UBE将减小(22.5)mV,即晶体管具有负温度系数。,3.温度每升高 1C,增加 0.5%1.0%。,3DG201的含义?,NPN型硅材料高频小功率管,三 极 管 的 型 号,半导体器件的型号命名法:,3DD15D的含义?,NPN型硅材料低频大功率管,三 极 管 的 型 号,半导体器件的型号命名法:,三 极 管 的 型 号,2 S C 945 A 的含义?,2:三极管1:二极管,注册登记号,A:PNP高频管B:PNP低频管C:NPN高频管D:NPN低频管,S:已注册,改进型,三 极 管 的 型 号,1 N 4728 的含义?,1:二极管2:三极管,注册登记号,N:已注册,让我们一起来做课堂练习吧!,课 堂 练 习,三极管制造工艺上的特点是:发射区_,基区_,集电区_。,(掺杂浓度高,很薄,面积较大),三极管工作在放大区时,发射结应_,集电结应_。,(正偏,反偏),课 堂 练 习,工作在放大区的某三极管,当IB从20A增大到40A时,IC从1 mA变成2 mA,它的值约为_。,(50),课 堂 练 习,有两个三极管,A管200,ICEO200A,B管的50,ICEO10A,其它参数大致相同。相比之下_管的性能较好。,(B),课 堂 练 习,测得某放大管三个电极 1、2、3的对地电位分别为 0.5 V、6.9 V、1.2 V,试分析判断该管的材料、管型和管脚。,1,2,3,硅管,2 为集电极,课 堂 练 习,14.6 光电器件,符号,14.6.1 发光二极管(LED),当发光二极管加上正向电压并有足够大的正向电流时,就能发出一定波长范围的光。目前的发光管可以发出从红外到可见波段的光,它的电特性与一般二极管类似。常用的有2EF等系列。发光二极管的工作电压为1.5 3V,工作电流为几 十几mA。,14.6.2 光电二极管,光电二极管在反向电压作用下工作。当无光照时,和普通二极管一样,其反向电流很小,称为暗电流。当有光照时,产生的反向电流称为光电流。照度E越强,光电流也越大。常用的光电二极管有2AU,2CU等系列。光电流很小,一般只有几十微安,应用时必须放大。,(a)伏安特性,(b)符号,E2 E1,14.6.2 光电晶体管,光电晶体管用入射光照度E的强弱来控制集电极电流。当无光照时,集电极电流 ICEO很小,称为暗电流。当有光照时,集电极电流称为光电流。一般约为零点几毫安到几毫安。常用的光电晶体管有3AU,3DU等系列。,(b)输出特性曲线,(a)符号,第15章 基本放大电路,15.1 共发射极放大电路的组成,15.2 放大电路的静态分析,15.4 静态工作点的稳定,15.6 射极输出器,15.9 互补对称功率放大电路,15.10 场效应管及其放大电路,15.3 放大电路的动态分析,15.5 放大电路中的频率特性,15.8 差动放大电路,15.7 多级放大电路及其级间耦合方式,本章要求:,1.理解单管交流放大电路的放大作用和共发射极、共集电极放大电路的性能特点;掌握静态工作点的估算方法和放大电路的微变等 效电路分析法;理解放大电路输入、输出电阻,理解多级放大的 概念,了解放大电路的频率特性、理解互补功率放 大电路的工作原理;4.理解差动放大电路的工作原理和性能特点;5.了解场效应管的电流放大作用、主要参数的意义。,第15章 基本放大电路,放大的概念:,放大的目的是将微弱的变化信号放大成较大的信号。,放大的实质:用小能量的信号通过三极管的电流控制作用,将放大电路中直流电源的能量转化成交流能量输出。,对放大电路的基本要求:1.要有足够的放大倍数(电压、电流、功率)。2.尽可能小的波形失真。另外还有输入电阻、输出电阻、通频带等其它技术指标。,本章主要讨论电压放大电路,同时介绍功率放大电路。,15.1 基本放大电路的组成,15.1.1 共发射极基本放大电路组成,共发射极基本电路,15.1 基本放大电路的组成,15.1.2 基本放大电路各元件作用,晶体管T-放大元件,iC=iB。要保证集电结反偏,发射结正偏,使晶体管工作在放大区。,基极电源EB与基极电阻RB-使发射结 处于正偏,并提供大小适当的基极电流。,共发射极基本电路,15.1 基本放大电路的组成,15.1.2 基本放大电路各元件作用,集电极电源EC-为电路提供能量。并保证集电结反偏。,集电极电阻RC-将变化的电流转变为变化的电压。,耦合电容C1、C2-隔离输入、输出与放大电路直流的联系,同时使信号顺利输入、输出。,信号源,共发射极基本电路,负载,信号源的两种形式,电压源:,电流源:,理想电压源与内阻相串联。,理想电流源与内阻相并联。,戴维宁,诺顿,符号规定,直流分量IB,交流分量 ib,iB,t,瞬时值 iB,0,15.1 基本放大电路的组成,单电源供电时常用的画法,共发射极基本电路,15.1.3 共射放大电路的电压放大作用,无输入信号(ui=0)时,uo=0uBE=UBEuCE=UCE,结论:,(1)无输入信号电压时,三极管各电极都是恒定的 电压和电流:IB、UBE和 IC、UCE。,(IB、UBE)和(IC、UCE)分别对应于输入、输出特性曲线上的一个点,称为静态工作点。,UBE,无输入信号(ui=0)时:,uo=0uBE=UBEuCE=UCE,?,有输入信号(ui 0)时,uCE=UCC iC RC,uo 0uBE=UBE+uiuCE=UCE+uo,15.1.3.共射放大电路的电压放大作用,ui,iB,uCE,uo,+VCC,放 大 电 路 各 点 的 波 形,+,+,结论:,(2)加上输入信号电压后,各电极电流和电压的大 小均发生了变化,都在直流量的基础上叠加了 一个交流量,但方向始终不变。,+,集电极电流,直流分量,交流分量,动态分析,静态分析,结论:,(3)若参数选取得当,输出电压可比输入电压大,即电路具有电压放大作用。,(4)输出电压与输入电压在相位上相差180,即共发射极电路具有反相作用。,1.实现放大的条件,(1)晶体管必须工作在放大区。发射结正偏,集 电结反偏。(2)正确设置静态工作点,使晶体管工作于放大区。(3)输入回路将变化的电压转化成变化的基极电流。(4)输出回路将变化的集电极电流转化成变化的 集电极电压,经电容耦合只输出交流信号。,2.直、流通路和交流通路,因电容对交、直流的作用不同。在放大电路中如果电容的容量足够大,可以认为它对交流分量不起作用,即对交流短路。而对直流可以看成开路。这样,交直流所走的通路是不同的。,直流通路:无信号时电流(直流电流)的通路,用来计算静态工作点。,交流通路:有信号时交流分量(变化量)的通路,用来计算电压放大倍数、输入电阻、输出电阻等动态参数。,例:画出下图放大电路的直流通路,直流通路,直流通路用来计算静态工作点Q(IB、IC、UCE),对直流信号电容 C 可看作开路(即将电容断开),断开,断开,对交流信号(有输入信号ui时的交流分量),XC 0,C 可看作短路。忽略电源的内阻,电源的端电压恒定,直流电源对交流可看作短路。,交流通路,用来计算电压放大倍数、输入电阻、输出电阻等动态参数。?,短路,短路,对地短路,微弱信号,放大电路的表示方法,信号源,负载,放大:,放大的两个要求:信号增强、波形不失真,放大电路模型,1.输入电阻:Ri=Vi/Ii Ri的大小决定放大电路从信号源吸取信号幅值的大小,放大电路的主要性能指标,2.输出电阻:Ro=Vo/IoRo的大小决定放大电路带负载的能力带负载能力:放大电路输出量随负载变化的程度。,四种增益:AV、AI,功 率:P=UI=U2/R=I2/R 功率增益=10 lg|AP|dB,3.增益:反映放大电路在输入信号控制下,将供电电源能量转换为输出信号能量的能力。,用分贝表示的电压增益和电流增益:电压增益=20 lg|AV|dB 电流增益=20 lg|AI|dB,15.2 放大电路的静态分析,静态:放大电路无信号输入(ui=0)时的工作状态。,分析方法:估算法、图解法。分析对象:各极电压电流的直流分量。所用电路:放大电路的直流通路。,设置Q点的目的:(1)使放大电路的放大信号不失真;(2)使放大电路工作在较佳的工作状态,静态是动态的基础。,静态工作点Q:IB、IC、UCE。,静态分析:确定放大电路的静态值。,15.2.1 用估算法确定静态值,1.直流通路估算 IB,根据电流放大作用,2.由直流通路估算UCE、IC,当UBE UCC时,,由KVL:UCC=IB RB+UBE,由KVL:UCC=IC RC+UCE,所以 UCE=UCC IC RC,例1:用估算法计算静态工作点。,已知:UCC=12V,RC=4k,RB=300k,=37.5。,解:,注意:电路中IB 和 IC 的数量级不同,例2:用估算法计算图示电路的静态工作点。,由例1、例2可知,当电路不同时,计算静态值的公式也不同。,由KVL可得出,由KVL可得:,15.2.2 用图解法确定静态值,用作图的方法确定静态值,步骤:1.用估算法确定IB,优点:能直观地分析和了解静 态值的变化对放大电路 的影响。,2.由输出特性确定IC 和UCC,直流负载线方程,15.2.2 用图解法确定静态值,直流负载线斜率,直流负载线,由IB确定的那条输出特性与直流负载线的交点就是Q点,15.3 放大电路的动态分析,动态:放大电路有信号输入(ui 0)时的工作状态。,分析方法:微变等效电路法,图解法。所用电路:放大电路的交流通路。,动态分析:计算电压放大倍数Au、输入电阻ri、输出电阻ro等。,分析对象:各极电压和电流的交流分量。,目的:找出Au、ri、ro与电路参数的关系,为设计 打基础。,15.3.1 微变等效电路法,微变等效电路:把非线性元件晶体管所组成的放大电路等效为一个线性电路。即把非线性的晶体管线性化,等效为一个线性元件。,线性化的条件:晶体管在小信号(微变量)情况下工作。因此,在静态工作点附近小范围内的特性曲线可用直线近似代替。,微变等效电路法:利用放大电路的微变等效电路分析计算放大电路电压放大倍数Au、输入电阻ri、输出电阻ro等。,(小信号模型法),晶体管的微变等效电路可从晶体管特性曲线求出。,当信号很小时,在静态工作点附近的输入特性在小范围内可近似线性化。,1.晶体管的微变等效电路,UBE,对于小功率三极管:,rbe一般为几百欧到几千欧。,15.3.1 微变等效电路法,(1)输入回路,Q,输入特性,晶体管的输入电阻,晶体管的输入回路(B、E之间)可用rbe等效代替,即由rbe来确定ube和 ib之间的关系,rbe是一个对交流信号而言的动态电阻。,(2)输出回路,rce愈大,恒流特性愈好因rce阻值很高,一般忽略不计。,晶体管的输出电阻,输出特性,输出特性在线性工作区是一组近似等距的平行直线。,晶体管的电流放大系数,晶体管的输出回路(C、E之间)可用一受控电流源 ic=ib等效代替,即由来确定ic和 ib之间的关系。,一般在20200之间,在手册中常用hfe表示。,ib,晶体三极管,微变等效电路,1.晶体管的微变等效电路,晶体管的B、E之间可用rbe等效代替。,晶体管的C、E之间可用一受控电流源ic=ib等效代替。,复习:受控源,独立电源:指电压源的电压或电流源的电流不受 外电路的控制而独立存在的电源。,受控源的特点:当控制电压或电流消失或等于零时,受控源的电压或电流也将为零。,受控电源:指电压源的电压或电流源的电流受电路中 其它部分的电流或电压控制的电源。,四种理想受控电源的模型,电压控制电压源,电流控制电压源,电压控制电流源,电流控制电流源,2.放大电路的微变等效电路,将交流通路中的晶体管用晶体管微变等效电路代替即可得放大电路的微变等效电路。,交流通路,微变等效电路,分析时假设输入为正弦交流,所以等效电路中的电压与电流可用相量表示。,微变等效电路,2.放大电路的微变等效电路,将交流通路中的晶体管用晶体管微变等效电路代替即可得放大电路的微变等效电路。,设正弦量:,相量:表示正弦量的复数称相量,电压的有效值相量,复习:正弦量的相量表示,实质:用复数表示正弦量,(1)相量只是表示正弦量,而不等于正弦量。,注意:,?,(2)只有正弦量才能用相量表示,非正弦量不能用相量表示。,(3)只有同频率的正弦量才能画在同一相量图上。,3.电压放大倍数的计算,当放大电路输出端开路(未接RL)时,因rbe与IE有关,故放大倍数与静态 IE有关。(P45例题15.3.1略),负载电阻愈小,放大倍数愈小。,式中的负号表示输出电压的相位与输入相反。,例1:,3.电压放大倍数的计算,例2:,由例1、例2可知,当电路不同时,计算电压放大倍数 Au 的公式也不同。要根据微变等效电路找出 ui与ib的关系、uo与ic 的关系。,4.放大电路输入电阻的计算,放大电路对信号源(或对前级放大电路)来说,是一个负载,可用一个电阻来等效代替。这个电阻是信号源的负载电阻,也就是放大电路的输入电阻。,定义:,输入电阻是对交流信号而言的,是动态电阻。,输入电阻是表明放大电路从信号源吸取电流大小的参数。电路的输入电阻愈大,从信号源取得的电流愈小,因此一般总是希望得到较大的输入电阻。,例1:,5.放大电路输出电阻的计算,放大电路对负载(或对后级放大电路)来说,是一个信号源,可以将它进行戴维宁等效,等效电源的内阻即为放大电路的输出电阻。,定义:,输出电阻是动态电阻,与负载无关。,输出电阻是表明放大电路带负载能力的参数。电路的输出电阻愈小,负载变化时输出电压的变化愈小,因此一般总是希望得到较小的输出电阻。,复习 戴维宁定理,任何一个有源二端线性网络都可以用一个电动势为E的理想电压源和内阻 R0 串联的电源来等效代替。,等效电源的内阻R0等于有源二端网络中所有电源均除去(理想电压源短路,理想电流源开路)后所得到的无源二端网络 a、b两端之间的等效电阻。,等效电源的电动势E 就是有源二端网络的开路电压U0,即将负载断开后 a、b两端之间的电压。,等效电源,(P47例题15.3.2),计算输出电阻的一般方法:加压求流法,1、所有独立电源置零,保留受控源;,2、断开负载,加压求流。,共射极放大电路特点:1.放大倍数高;2.输入电阻低;3.输出电阻高。,例3:,求ro的步骤:(1)断开负载RL,(3)外加电压,(4)求,外加,(2)令 或,外加,例4:,(课堂练习)综合例题:已知 VCC=12V,Rc=3K,Rb=470K,=100,试求:,(1)静态工作点,(2)Av,(3)Ri、Ro,(4)接RL2K,后的Av,+,+,(1)静态工作点,(2)Av,rbe,Rb,Rc,(3)Ri、Ro,Ri,RO,(4)接RL2K 后的Av,交 流 通 路,15.3.2 图解法,D,C,1.交流负载线,交流负载线反映动态时电流 iC和电压uCE的变化关系。,交流负载线斜率,动态分析作图应在交流负载线上进行!,2.图解分析,RL=,1.电压和电流都含有交流和直流分量,可以看出传输情况.2.uO和ui相位相反.3.由uO和ui的峰值(或峰峰值)之比可得放大电路的电压放大倍数,RL愈小,交流负载线愈陡,Au愈小。,合适的静态工作点:,最大不失真输出信号,3.非线性失真,频率失真(线性失真):由于线性电抗元件引起的失真,幅度失真:,对不同频率的信号增益不同,产生的失真。,相位失真:,对不同频率的信号相移不同,产生的失真。,非线性失真:,由于元器件的非线性特性引起的失真。,用非线性失真系数衡量,如果Q设置不合适,晶体管进入截止区或饱和区工作,将造成非线性失真。,若Q设置过高,,晶体管进入饱和区工作,造成饱和失真。,适当减小基极电流可消除失真。,若Q设置过低,,晶体管进入截止区工作,造成截止失真。,适当增加基极电流可消除失真。,如果Q设置合适,信号幅值过大也可产生失真,减小信号幅值可消除失真。,放大电路分析步骤画直流通路,计算静态工作点Q画交流通路画小信号等效电路计算 rbe计算电压放大倍数Av计算输入电阻Ri计算输出电阻Ro,15.4 静态工作点的稳定,合理设置静态工作点是保证放大电路正常工作的先决条件。但是放大电路的静态工作点常因外界条件的变化而发生变动。,前述的固定偏置放大电路,简单、容易调整,但在温度变化、三极管老化、电源电压波动等外部因素的影响下,将引起静态工作点的变动,严重时将使放大电路不能正常工作,其中影响最大的是温度的变化。,Q点稳定问题,为使放大电路具有较好的性能,必须设置合适且稳定的静态工作点(Q点)。,实际应用中,电源电压的波动、元件参数的分散性及元件的老化、环境温度变化等,都会引起Q点的不稳定,影响放大电路的正常工作。,15.4.1 温度变化对静态工作点的影响,温度对UBE的影响,温度对值及ICEO的影响,iC,uCE,Q,温度升高时,输出特性曲线上移,固定偏置电路的工作点Q点是不稳定的,为此需要改进偏置电路。当温度升高使 IC 增加时,能够自动减少IB,从而抑制Q点的变化,保持Q点基本稳定。,结论:当温度升高时,IC将增加,使Q点沿负载线上移,容易使晶体管 T进入饱和区造成饱和失真,甚至引起过热烧坏三极管。,O,15.4.2 分压式偏置电路,1.稳定Q点的原理,基极电位基本恒定,不随温度变化。,VB,15.4.2 分压式偏置电路,1.稳定Q点的原理,VB,集电极电流基本恒定,不随温度变化。,从Q点稳定的角度来看似乎I2、VB越大越好。但 I2 越大,RB1、RB2必须取得较小,将增加损耗,降低输入电阻。而VB过高必使VE也增高,在UCC一定时,势必使UCE减小,从而减小放大电路输出电压的动态范围。,在估算时一般选取:I2=(5 10)IB,VB=(5 10)UBE,RB1、RB2的阻值一般为几十千欧。,参数的选择,VE,VB,Q点稳定的过程,VE,VB,VB 固定,RE:温度补偿电阻 对直流:RE越大,稳定Q点效果越好;对交流:RE越大,交流损失越大,为避免交流损失加旁路电容CE。,2.静态工作点的计算,估算法:,VB,3.动态分析,对交流:旁路电容 CE 将RE 短路,RE不起作用,Au,ri,ro与固定偏置电路相同。,旁路电容,Ro=Rc,3.动态分析,去掉CE后的微变等效电路,如果去掉CE,Au,ri,ro?,无旁路电容CE,有旁路电容CE,Au减小,分压式偏置电路,ri 提高,ro不变,例1:,(例15.4.2)在图示放大电路中,已知UCC=12V,RC=6k,RE1=300,RE2=2.7k,RB1=60k,RB2=20k,RL=6k