欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    数学分析课件函数的幂级数.ppt

    • 资源ID:6185920       资源大小:937.50KB        全文页数:35页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    数学分析课件函数的幂级数.ppt

    2 函数的幂级数展开,由泰勒公式知道,可以将满足一定条件的函数表示为一个多项式与一个余项的和.如果能将一个满足适当条件的函数在某个区间上表示成一个幂级数,就为函数的研究提供了一种新的方法.,返回,二、初等函数的幂级数展开式,一、泰勒级数,一、泰勒级数,在第六章3的泰勒定理中曾指出,若函数f在点x0,的某邻域内存在直至n+1阶的连续导数,则,这是泰勒公式带来的重要结论.,可以由函数 f 得到一个幂级数,所要着重讨论的问题.请先看一个例子.,例1 由于函数,二段末尾),即,上例说明,具有任意阶导数的函数,其泰勒级数并不,都能收敛于该函数本身,哪怕在很小的一个邻域内.,那么怎样的函数,其泰勒级数才能收敛于它本身呢?,本定理的证明可以直接从第六章3泰勒定理推出.,勒级数,并称等式,开式.,由级数的逐项求导性质可得:,即幂级数展开式是惟一的.,这时(3)式就变成,称为麦克劳林级数.,从定理14.11知道,余项对确定函数能否展开为幂级,积分型余项、拉格朗日型余项和柯西型余项,以便,于后面的讨论.它们分别是,二、初等函数的幂级数展开式,例2 求k次多项式函数,的幂级数展开式.,解 由于,即多项式函数的幂级数展开式就是它本身.,例3 求函数 f(x)=ex 的幂级数展开式.,解,显见,对任何实数 x,都有,例4,林级数:,例5,用柯西型余项.此时有,处的泰勒展开式:,其收敛域为,到 f 的展开式,这已在前面例2中讨论过.,考察它的柯西型余项,由比式判别法,于,1,所以在,论如下:,对于收敛区间端点的情形,与 的取值有关,其结,一般来说,只有比较简单的函数,其幂级数展开式能,直接从定义出发,并根据定理14.11求得.更多的情,况是从已知的展开式出发,通过变量代换、四则运,算或逐项求导、逐项求积等方法,间接地求得函数,的幂级数展开式.,注 求一个函数的幂级数展开式就是确定该幂级数,各项的系数,根据展开式的惟一性,不管用什么方,法得到的系数都是一样的.这就是间接展开的根据.,的展开式:,由此可见,熟练掌握某些初等函数的展开式,对求,其他一些函数的幂级数展开式是非常方便和有用的,特别是例3 例7 的结果,对于今后用间接方法求幂,级数展开十分方便.,式.,用类似方法可得,.(13),大家一定非常熟悉三角函数表和对数表,但这些表,是怎样制作出来的呢?,.为了误差小于0.0001,就必须计算,级数前10000 项的和,收敛得太慢.为此在(13)式中,估计余项:,因此,最后举例说明怎样用幂级数形式表示某些非初等函,数,这是幂级数特有的功能.,例10 用间接方法求非初等函数,的幂级数展开式.,F(x)用上述级数的部分和逐项逼近的过程,示于,下图:,复习思考题,论),

    注意事项

    本文(数学分析课件函数的幂级数.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开