格林公式例题与习题.ppt
,区域 D 分类,单连通区域(无“洞”区域),多连通区域(有“洞”区域),规定:域 D 边界L 的正向:域的内部靠左,定理1.设区域 D 是由分段光滑正向曲线 L 围成,则有,(格林公式),函数,在 D 上具有连续一阶偏导数,或,一、格林公式,推论:正向闭曲线 L 所围区域 D 的面积,格林公式,例如,椭圆,所围面积,定理1,例1.,设 L 是一条分段光滑的闭曲线,证明,证:令,则,利用格林公式,得,例2.计算,其中D 是以 O(0,0),A(1,1),B(0,1)为顶点的三角形闭域.,解:令,则,利用格林公式,有,二、平面上曲线积分与路径无关的等价条件,定理2.设D 是单连通域,在D 内,具有一阶连续偏导数,(1)沿D 中任意光滑闭曲线 L,有,(2)对D 中任一分段光滑曲线 L,曲线积分,(3),(4)在 D 内每一点都有,与路径无关,只与起止点有关.,函数,则以下四个条件等价:,在 D 内是某一函数,的全微分,即,说明:,根据定理2,若在某区域D内,则,注:求曲线积分时,若积分路径不是闭曲线,且难计算,则可添加辅助线后,利用格林公式简化计算。,2)可用积分法求d u=P dx+Q dy在域 D 内的原函数:,及动点,或,则原函数为,取定点,1)计算曲线积分时,可选择方便的积分路径;,定理2,3)若已知 d u=P dx+Q dy,则对D内任一分段光滑曲,定理2,注:此式称为曲线积分的基本公式(P213定理4).,它类似于微积分基本公式:,例4.计算,其中L 为上半,从 O(0,0)到 A(4,0).,解:为了使用格林公式,添加辅助线段,它与L 所围,原式,圆周,区域为D,则,例5.验证,是某个函数的全微分,并求,出这个函数及,证:设,则,由定理2 可知,存在函数 u(x,y)使,例6.验证,在右半平面(x 0)内存在原函,数,并求出它.,证:令,则,由定理 2 可知存在原函数,或,例7.设质点在力场,作用下沿曲线 L:,由,移动到,求力场所作的功W,解:,令,则有,可见,在不含原点的单连通区域内积分与路径无关.,思考:积分路径是否可以取,取圆弧,为什么?,注意,本题只在不含原点的单连通区域内积分与路径,无关!,内容小结,转内容小结,内容小结,1.格林公式,2.等价条件,在 D 内与路径无关.,在 D 内有,对 D 内任意闭曲线 L 有,在 D 内有,设 P,Q 在 D 内具有一阶连续偏导数,则有,为全微分方程,2.设,提示:,作业P214 5(1),(4);,第四节,第四节,