欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    数学分析课件第5章导数和微分.ppt

    • 资源ID:6166344       资源大小:965.50KB        全文页数:30页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    数学分析课件第5章导数和微分.ppt

    一、导数的四则运算,2 求导法则,导数很有用,但全凭定义来计算导,四、基本求导法则与公式,三、复合函数的导数,二、反函数的导数,求导法则,使导数运算变得较为简便.,数是不方便的.为此要建立一些有效的,返回,一、导数的四则运算,在点 x0 也可导,且,推论 若 u(x)在点 x0 可导,c 是常数,则,在点 x0 也可导,且,定理 5.6 若函数 在点 x0 可导,则函数,定理 5.5 若函数 在点 x0 可导,则函数,定理 5.6 可推广到任意有限个函数相乘的情形,如,下面证明乘积公式(2),请读者自行证明公式(1).,证(2)按定义可得,记错了.,例1,解,因此,对于多项式 f 而言,总是比 f 低一个幂次.,例2,解 由公式(2),得,在点 x0 也可导,且,定理5.7 若函数 在点 x0 可导,证,由于 在点 x0 可导,因此,对 应用公式(2)和(5),得,(5),例3 求下列函数的导数:,解,同理可得,同理可得,证,定理 5.8 设 为 的反函数,在,二、反函数的导数,则 在点 可导,且,点 的某邻域内连续,严格单调,且,例4 求下列函数的导数:,单调,从而有,解,上的反函数,故,同理有,的反函数,故,上,定理 5.9,在点 x0 可,这个定理一般用有限增量公式来证明,但为了与,导,且,三、复合函数的导数,证法,为此需要先证明一个引理.,今后学习向量函数相联系,这里采用另一种新的,引理 f 在点 x0 可导的充要条件是:在 x0 的某邻,证 设 f(x)在点 x0 可导,且令,得 f(x)在点 x0 可导,下面证明定理 5.9(公式(7).,根据极限,于是当 有,公式(7)改写为,连续,,根据引,理的充分性,这样就容易理解“链”的,例5,在链式法则中一定要区分,意义了.,例6,解 运用复合求导法则,分别计算如下:,例8 求下列函数的导数:,解,所以 在 处不可导.,化某些连乘、连除式的求导.,例9,解 先对函数两边取对数,得,再对上式两边求导,又得,于是得到,求导法则:,四、基本求导法则与公式,基本初等函数的导数公式:,

    注意事项

    本文(数学分析课件第5章导数和微分.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开