欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    放大器的基本原理经典.ppt

    • 资源ID:6164622       资源大小:2.87MB        全文页数:160页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    放大器的基本原理经典.ppt

    第二章 放大器的基本原理,第一节 半导体器件,半导体的基本知识 PN 结及半导体二极管 半导体三极管,第二节 基本放大电路,2.2.1 放大电路的组成2.2.2 放大电路的分析方法2.2.3 静态工作点的稳定2.2.4 放大器的主要性能指标2.2.5 多级阻容耦合放大电路,导体、半导体和绝缘体,导体:自然界中很容易导电的物质称为导体,金属一般都是导体。,绝缘体:有的物质几乎不导电,称为绝缘体,如橡皮、陶瓷、塑料和石英。,半导体:另有一类物质的导电特性处于导体和绝缘体之间,称为半导体,如锗、硅、砷化镓和一些硫化物、氧化物等。,半导体的导电机理不同于其它物质,所以它具有不同于其它物质的特点。例如:,当受外界热和光的作用时,它的导电能 力明显变化。,往纯净的半导体中掺入某些杂质,会使 它的导电能力明显改变。,一、本征半导体的结构特点,通过一定的工艺过程,可以将半导体制成晶体。,现代电子学中,用的最多的半导体是硅和锗,它们的最外层电子(价电子)都是四个。,本征半导体,本征半导体:完全纯净的、结构完整的半导体晶体。,在硅和锗晶体中,原子按四角形系统组成晶体点阵,每个原子都处在正四面体的中心,而四个其它原子位于四面体的顶点,每个原子与其相临的原子之间形成共价键,共用一对价电子。,硅和锗的晶体结构:,硅和锗的共价键结构,共价键共用电子对,+4表示除去价电子后的原子,共价键中的两个电子被紧紧束缚在共价键中,称为束缚电子,常温下束缚电子很难脱离共价键成为自由电子,因此本征半导体中的自由电子很少,所以本征半导体的导电能力很弱。,形成共价键后,每个原子的最外层电子是八个,构成稳定结构。,共价键有很强的结合力,使原子规则排列,形成晶体。,二、本征半导体的导电机理,在绝对0度(T=0K)和没有外界激发时,价电子完全被共价键束缚着,本征半导体中没有可以运动的带电粒子(即载流子),它的导电能力为 0,相当于绝缘体。,在常温下,由于热激发,使一些价电子获得足够的能量而脱离共价键的束缚,成为自由电子,同时共价键上留下一个空位,称为空穴。,1.载流子、自由电子和空穴,空穴,束缚电子,自由电子,二、本征半导体的导电机理,1.载流子、自由电子和空穴,2.本征半导体的导电机理,在其它力的作用下,空穴吸引附近的电子来填补,这样的结果相当于空穴的迁移,而空穴的迁移相当于正电荷的移动,因此可以认为空穴是载流子。,本征半导体中存在数量相等的两种载流子,即自由电子和空穴。,温度越高,载流子的浓度越高。因此本征半导体的导电能力越强,温度是影响半导体性能的一个重要的外部因素,这是半导体的一大特点。,本征半导体的导电能力取决于载流子的浓度。,本征半导体中电流由两部分组成:1.自由电子移动产生的电流。2.空穴移动产生的电流。,杂质半导体,在本征半导体中掺入某些微量的杂质,就会使半导体的导电性能发生显著变化。其原因是掺杂半导体的某种载流子浓度大大增加。,P 型半导体:空穴浓度大大增加的杂质半导体,也称为(空穴半导体)。,N 型半导体:自由电子浓度大大增加的杂质半导体,也称为(电子半导体)。,一、N 型半导体,在硅或锗晶体中掺入少量的五价元素磷(或锑),晶体点阵中的某些半导体原子被杂质取代,磷原子的最外层有五个价电子,其中四个与相邻的半导体原子形成共价键,必定多出一个电子,这个电子几乎不受束缚,很容易被激发而成为自由电子,这样磷原子就成了不能移动的带正电的离子。每个磷原子给出一个电子,称为施主原子。,一、N 型半导体,多余电子,磷原子,N 型半导体中的载流子是什么?,1.由施主原子提供的电子,浓度与施主原子相同。,2.本征半导体中成对产生的电子和空穴。,掺杂浓度远大于本征半导体中载流子浓度,所以,自由电子浓度远大于空穴浓度。自由电子称为多数载流子(多子),空穴称为少数载流子(少子)。,二、P 型半导体,空穴,硼原子,P 型半导体中空穴是多子,电子是少子。,三、杂质半导体的示意表示法,杂质型半导体多子和少子的移动都能形成电流。但由于数量的关系,起导电作用的主要是多子。近似认为多子与杂质浓度相等。,PN 结的形成,在同一片半导体基片上,分别制造P 型半导体和N 型半导体,经过载流子的扩散,在它们的交界面处就形成了PN 结。,2.1.2 PN结及半导体二极管,P型半导体,N型半导体,扩散的结果是使空间电荷区逐渐加宽,空间电荷区越宽。,内电场越强,就使漂移运动越强,而漂移使空间电荷区变薄。,扩散和漂移这一对相反的运动最终达到平衡,相当于两个区之间没有电荷运动,空间电荷区的厚度固定不变。,空间电荷区,N型区,P型区,电位V,V0,空间电荷区中没有载流子。,注意:,空间电荷区中内电场阻碍P区中的空穴、N区中的电子都是多子)向对方运动(扩散运动)。,P 区中的电子和N区中的空穴(都是少子),数量有限,因此由它们形成的电流很小。,PN结的单向导电性,PN 结加上正向电压、正向偏置的意思都是:P 区加正、N 区加负电压。,PN 结加上反向电压、反向偏置的意思都是:P区加负、N 区加正电压。,一、PN 结正向偏置,P,N,+,_,内电场被削弱,多子的扩散加强能够形成较大的扩散电流。,二、PN 结反向偏置,N,P,+,_,内电场被被加强,多子的扩散受抑制。少子漂移加强,但少子数量有限,只能形成较小的反向电流。,R,E,半导体二极管,一、基本结构,PN 结加上管壳和引线,就成为半导体二极管。,点接触型,面接触型,二、伏安特性,死区电压 硅管0.6V,锗管0.2V。,导通压降:硅管0.60.7V,锗管0.20.3V。,反向击穿电压UBR,三、主要参数,1.最大整流电流 IOM,二极管长期使用时,允许流过二极管的最大正向平均电流。,2.反向击穿电压UBR,二极管反向击穿时的电压值。击穿时反向电流剧增,二极管的单向导电性被破坏,甚至过热而烧坏。手册上给出的最高反向工作电压UWRM一般是UBR的一半。,3.反向电流 IR,指二极管加反向峰值工作电压时的反向电流。反向电流大,说明管子的单向导电性差,因此反向电流越小越好。反向电流受温度的影响,温度越高反向电流越大。硅管的反向电流较小,锗管的反向电流要比硅管大几十到几百倍。,以上均是二极管的直流参数,二极管的应用是主要利用它的单向导电性,主要应用于整流、限幅、保护等等。下面介绍两个交流参数。,4.微变电阻 rD,uD,rD 是二极管特性曲线上工作点Q 附近电压的变化与电流的变化之比:,显然,rD是对Q附近的微小变化区域内的电阻。,二极管:死区电压=0.5V,正向压降0.7V(硅二极管)理想二极管:死区电压=0,正向压降=0,二极管的应用举例:二极管半波整流,稳压二极管,U,IZ,稳压误差,曲线越陡,电压越稳定。,-,UZ,(4)稳定电流IZ、最大、最小稳定电流Izmax、Izmin。,(5)最大允许功耗,稳压二极管的参数:,(1)稳定电压 UZ,(3)动态电阻,基本结构,基极,发射极,集电极,NPN型,PNP型,2.1.3 半导体三极管,基区:较薄,掺杂浓度低,集电区:面积较大,发射区:掺杂浓度较高,发射结,集电结,晶体管放大原理,EB,RB,进入P区的电子少部分与基区的空穴复合,形成电流IBE,多数扩散到集电结。,发射结正偏,发射区电子不断向基区扩散,形成发射极电流IE。,EB,RB,集电结反偏,有少子形成的反向电流ICBO。,从基区扩散来的电子作为集电结的少子,漂移进入集电结而被收集,形成ICE。,IB=IBE-ICBOIBE,EB,RB,基极电流IB 小,集电极电流IC 大,,根据基尔霍夫第一定律:,直流电流放大系数,若取电流的变化量,则有,交流放大系数,要使三极管能放大电流,必须使发射结正偏,集电结反偏。,NPN型三极管,PNP型三极管,特性曲线,一、输入特性,工作压降:硅管UBE0.60.7V,锗管UBE0.20.3V。,死区电压,硅管0.5V,锗管0.2V。,二、输出特性,IC(mA),此区域满足IC=IB称为线性区(放大区)。,当UCE大于一定的数值时,IC只与IB有关,IC=IB。,0.7,此区域中UCEUBE,集电结正偏,IBIC,UCE0.3V称为饱和区。,此区域中:IB=0,IC=ICEO,UBE 死区电压,称为截止区。,输出特性三个区域的特点:,放大区:发射结正偏,集电结反偏。即:IC=IB,且 IC=IB,(2)饱和区:发射结正偏,集电结正偏。即:UCEUBE,IBIC,UCE0.3V,(3)截止区:UBE 死区电压,IB=0,IC=ICEO 0,三、主要参数,前面的电路中,三极管的发射极是输入输出的公共点,称为共射接法,相应地还有共基、共集接法。,共射直流电流放大倍数:,工作于动态的三极管,真正的信号是叠加在直流上的交流信号。基极电流的变化量为IB,相应的集电极电流变化为IC,则交流电流放大倍数为:,1.电流放大倍数和,放大元件,起电流放大作用,是整个放大电路的核心。,输入,输出,参考点,耦合电容C1:隔直作用:隔断放大电路与信号源之间的直流通路交流耦合:保证交流信号顺利通过,2.集-基极反向截止电流ICBO,ICBO是集电结反偏由少子的漂移形成的反向电流,受温度的变化影响。,B,E,C,N,N,P,ICBO进入N区,形成IBE。,根据放大关系,由于IBE的存在,必有电流IBE。,集电结反偏有ICBO,3.集-射极反向截止电流ICEO,ICEO受温度影响很大,当温度上升时,ICEO增加很快,所以IC也相应增加。三极管的温度特性较差。,4.集电极最大电流ICM,集电极电流IC上升会导致三极管的值的下降,当值下降到正常值的三分之二时的集电极电流即为ICM。,5.集-射极反向击穿电压,当集-射极之间的电压UCE超过一定的数值时,三极管就会被击穿。手册上给出的数值是25C、基极开路时的击穿电压U(BR)CEO。,6.集电极最大允许功耗PCM,集电极电流IC 流过三极管,所发出的焦耳 热为:,PC=ICUCE,必定导致结温 上升,所以PC 有限制。,PCPCM,ICUCE=PCM,安全工作区,2.2.1 放大电路的组成,放大的概念,电子学中放大的目的是将微弱的变化信号放大成较大的信号。这里所讲的主要是电压放大电路。,电压放大电路可以用有输入口和输出口的四端网络表示,如图:,Ku,基本放大电路的组成,三极管放大电路有三种形式,共射放大器,共基放大器,共集放大器,以共射放大器为例讲解工作原理,放大元件,起电流放大作用,是整个放大电路的核心。,输入,输出,?,参考点,作用:使发射结正偏,并提供适当的静态工作点。,基极电源与基极电阻,集电极电源,为电路提供能量。并保证集电结反偏。,集电极电阻,将变化的电流转变为变化的电压。,耦合电容:电解电容,有极性。大小为10F50F,作用:隔离输入输出与电路直流的联系,同时能使信号顺利输入输出。,可以省去,电路改进:采用单电源供电,二、基本放大电路的工作原理,由于电源的存在IB0,IC0,IBQ,ICQ,IEQ=IBQ+ICQ,一、静态工作点,IBQ,ICQ,(ICQ,UCEQ),(IBQ,UBEQ),(IBQ,UBEQ)和(ICQ,UCEQ)分别对应于输入输出特性曲线上的一个点称为静态工作点。,IB,uCE怎么变化,?,假设uBE有一微小的变化,uCE的变化沿一条直线,uce相位如何,?,uce与ui反相!,各点波形,实现放大的条件,1.晶体管必须偏置在放大区。发射结正偏,集电结反偏。,2.正确设置静态工作点,使整个波形处于放大区。,3.输入回路将变化的电压转化成变化的基极电流。,4.输出回路将变化的集电极电流转化成变化的集电极电压,经电容滤波只输出交流信号。,如何判断一个电路是否能实现放大?,3.晶体管必须偏置在放大区。发射结正偏,集电结反偏。,4.正确设置静态工作点,使整个波形处于放大区。如果已给定电路的参数,则计算静态工作点来判断;如果未给定电路的参数,则假定参数设置正确。,1.信号能否输入到放大电路中。,2.信号能否输出。,与实现放大的条件相对应,判断的过程如下:,2.2.2 放大电路的分析方法,放大电路分析,静态分析,动态分析,估算法,图解法,微变等效电路法,图解法,计算机仿真,直流通道和交流通道,放大电路中各点的电压或电流都是在静态直流上附加了小的交流信号。,但是,电容对交、直流的作用不同。如果电容容量足够大,可以认为它对交流不起作用,即对交流短路。而对直流可以看成开路,这样,交直流所走的通道是不同的。,交流通道:只考虑交流信号的分电路。直流通道:只考虑直流信号的分电路。信号的不同分量可以分别在不同的通道分析。,例:,对直流信号(只有+EC),对交流信号(输入信号ui),一、直流负载线,IC,UCE,UCEIC满足什么关系?,1.三极管的输出特性。,2.UCE=EC ICRC。,直流负载线,与输出特性的交点就是Q点,IB,直流负载线和交流负载线,二、交流负载线,其中:,iC 和 uCE是全量,与交流量ic和uce有如下关系,所以:,这条直线通过Q点,称为交流负载线。,交流负载线的作法,IB,过Q点作一条直线,斜率为:,交流负载线,静态分析,一、估算法,(1)根据直流通道估算IB,RB称为偏置电阻,IB称为偏置电流。,(2)根据直流通道估算UCE、IC,IC,UCE,+EC,二、图解法,先估算 IB,然后在输出特性曲线上作出直流负载线,与 IB 对应的输出特性曲线与直流负载线的交点就是Q点。,例:用估算法计算静态工作点。,已知:EC=12V,RC=4k,RB=300k,=37.5。,解:,请注意电路中IB 和IC 的数量级。,动态分析,一、三极管的微变等效电路,1.输入回路,当信号很小时,将输入特性在小范围内近似线性。,uBE,对输入的小交流信号而言,三极管相当于电阻rbe。,rbe的量级从几百欧到几千欧。,2.输出回路,所以:,(1)输出端相当于一个受ib 控制的电流源。,(2)考虑 uCE对 iC的影响,输出端还要并联一个大电阻rce。,rce的含义,rce很大,一般忽略。,3.三极管的微变等效电路,c,b,e,二、放大电路的微变等效电路,将交流通道中的三极管用微变等效电路代替:,三、电压放大倍数的计算,特点:负载电阻越小,放大倍数越小。,四、输入电阻的计算,对于为放大电路提供信号的信号源来说,放大电路是负载,这个负载的大小可以用输入电阻来表示。,电路的输入电阻越大,从信号源取得的电流越小,因此一般总是希望得到较大的的输入电阻。,五、输出电阻的计算,对于负载而言,放大电路相当于信号源,其内阻即为放大器的输出电阻ro,它是一个动态电阻。由于电流源的内阻为无穷大,所以,失真分析,在放大电路中,输出信号应该成比例地放大输入信号(即线性放大);如果两者不成比例,则输出信号不能反映输入信号的情况,放大电路产生,为了得到尽量大的输出信号,要把Q设置在交流负载线的中间部分。如果Q设置不合适,信号进入截止区或饱和区,则造成非线性失真。,下面将分析失真的原因。为简化分析,假设负载为空载(RL=)。,非线性失真,VBE,输入情况,VBE,uo,ib,输出情况,M,N,Q,Q,uo,可输出的最大不失真信号,选择静态工作点,Q,Q,Q,uo,1.Q点过低,信号进入截止区,放大电路产生截止失真,Q,Q,Q,2.Q点过高,信号进入饱和区,放大电路产生饱和失真,ib,输入波形,Q,Q,Q,2.2.3 静态工作点的稳定,为了保证放大电路的稳定工作,必须有合适的、稳定的静态工作点。但是,温度的变化严重影响静态工作点。,工作点不稳定的原因很多,但主要影响因素是晶体管的特性参数UBE、ICBO 和。这三个参数随温度而变化,温度对静态工作点的影响主要体现在这一方面。,T,UBE,ICBO,Q,一、温度对UBE的影响,UBE的变化将通过IB的变化影响Q点,二、温度对 值及ICBO的影响,Q,总的效果是:,温度上升时,输出特性曲线上移,造成Q点上移。,小结:,固定偏置电路的Q点是不稳定的。Q点不稳定可能会导致静态工作点靠近饱和区或截止区,从而导致失真。为此,需要改进偏置电路,当温度升高、IC增加时,能够自动减少IB,从而抑制Q点的变化。保持Q点基本稳定。,常采用分压式偏置电路来稳定静态工作点。电路见下页。,分压式偏置电路:,一、静态分析,RE射极直流负反馈电阻,CE 交流旁路电容,本电路稳压的过程实际是由于加了RE形成了负反馈过程,1.静态工作点稳定的原理,2.求静态工作点,算法一:,上述四个方程联立,可求出IE,进而,可求出UCE。,本算法比较麻烦,通常采用下面介绍的算法二、三。,方框中部分用戴维南定理等效为:,进而,可求出IE、UCE。,算法二:,算法三:,可以认为与温度无关。,似乎I2越大越好,但是RB1、RB2太小,将增加损耗,降低输入电阻。因此一般取几十k。,例:已知=50,EC=12V,RB1=7.5k,RB2=2.5k,RC=2k,RE=1k,求该电路的静态工作点。,算法一、二的结果:,算法三的结果:,结论:三种算法的结果近似相等,但算法三的计算过程要简单得多。,二、动态分析,+EC,uo,问题:如果去掉CE,放大倍数怎样?,去掉 CE 后的交流通路和微变等效电路:,用加压求流法求输出电阻。,可见,去掉CE后,放大倍数减小、输出电阻不变,但输入电阻增大了。,问题2:如果电路如下图所示,如何分析?,静态分析:,直流通路,动态分析:,交流通路,交流通路:,微变等效电路:,问题:Au 和 Aus 的关系如何?,定义:,放大器的主要性能指标,一、放大倍数与增益,电压放大倍数Ku,电流放大倍数Ki,功率放大倍数Kp,单位:dB,功率增益Gp,电流增益Gi,电压增益Gu,二、输入阻抗,放大电路一定要有前级(信号源)为其提供信号,那么就要从信号源取电流。输入电阻是衡量放大电路从其前级取电流大小的参数。输入电阻越大,从其前级取得的电流越小,对前级的影响越小。,定义:,即:ri越大,Ii 就越小,ui就越接近uS,输入电阻ri,三、输出阻抗ro,当输入信号不变,负载改变时,输出电压改变量uo与输出电流改变量io之比,对于低频交流信号,输出阻抗是纯电阻性,输出阻抗,放大电路对其负载而言,相当于信号源,我们可以将它等效为戴维南等效电路,这个戴维南等效电路的内阻就是输出电阻。,ro越小,放大电路的负载能力越强。,如何确定电路的输出电阻ro?,步骤:,1.所有的电源置零(将独立源置零,保留受控源)。,2.加压求流法。,方法一:计算。,方法二:测量。,1.测量开路电压。,2.测量接入负载后的输出电压。,步骤:,3.计算。,四、通频带,通频带:,fbw=fH fL,放大倍数随频率变化曲线幅频特性曲线,通频带越宽,放大器对信号的频率变化适应能力越强。,四、信噪比与噪声系数,信噪比:,有用信号功率,噪声信号功率,噪声系数:,信噪比越大越好,NF越小,说明放大器对微弱信号的实际放大能力越强。,耦合方式:直接耦合;阻容耦合;变压器耦合;光电耦合。,2.2.5 多级阻容耦合放大电路,耦合:即信号的传送。,多级放大电路对耦合电路要求:,1.静态:保证各级Q点设置,2.动态:传送信号。,第 n-1 级放大电路,要求:波形不失真,减少压降损失。,设:1=2=50,rbe1=2.9k,rbe2=1.7 k,典型电路,+UCC,1M,(+24V),R1,27k,C2,C3,R3,R2,RL,RE2,82k,43k,10k,8k,10k,C1,RC2,T1,RE1,CE,T2,关键:考虑级间影响。,1.静态:Q点同单级。,2.动态性能:,方法:,ri2=RL1,+UCC,1M,(+24V),R1,27k,C2,C3,R3,R2,RL,RE2,82k,43k,10k,8k,10k,C1,RC2,T1,RE1,CE,T2,性能分析,1,+UCC,1M,(+24V),R1,27k,C2,C3,R3,R2,RL,RE2,82k,43k,10k,8k,10k,C1,RC2,T1,RE1,CE,T2,微变等效电路:,+UCC,1M,(+24V),R1,27k,C2,C3,R3,R2,RL,RE2,82k,43k,10k,8k,10k,C1,RC2,T1,RE1,CE,T2,1.ri=R1/rbe1+(+1)RL1,其中:RL1=RE1/ri2=RE1/R2/R3/rbe2=RE1/RL1=RE1/ri2=27/1.7 1.7k,ri=1000/(2.9+511.7)82k,2.ro=RC2=10k,3.中频电压放大倍数:,多级阻容耦合放大器的特点:,(1)由于电容的隔直作用,各级放大器的静态工作点相互独立,分别估算。(2)前一级的输出电压是后一级的输入电压。(3)后一级的输入电阻是前一级的交流负载电阻。(4)总电压放大倍数=各级放大倍数的乘积。(5)总输入电阻 ri 即为第一级的输入电阻ri1。(6)总输出电阻即为最后一级的输出电阻。,由上述特点可知,射极输出器接在多级放大电路的首级可提高输入电阻;接在末级可减小输出电阻;接在中间级可起匹配作用,从而改善放大电路的性能。,例1:放大电路由下面两个放大电路组成。已知EC=15V,R1=100k,R2=33k,RE1=2.5k,RC=5k,1=60,;RB=570k,RE2=5.6k,2=100,RS=20k,RL=5k,求直接采用放大电路一的放大倍数Au和Aus。若信号经放大电路一放大后,再经射极输出器输出,求放大倍数Au、ri和ro。若信号经射极输出器后,再经放大后放大电路一输出,求放大倍数Aus。,ri=R1/R2/rbe=1.52 k,(1)由于RS大,而ri小,致使放大倍数降低;(2)放大倍数与负载的大小有关。例:RL=5k 时,Au=-93;RL=1k 时,Au=-31。,求直接采用放大电路一的放大倍数Au和Aus。,rbe1=1.62 k,rbe2=2.36 k,2.若信号经放大电路一放大后,再经射极输出器输出,求放大倍数Au、ri和ro。,讨论:带负载能力。,2.输出不接射极输出器时的带负载能力:,RL=5k 时:Au=-93RL=1k 时:Au=-31,即:当RL由5k变为1k时,放大倍数降低到原来的92.3%。,放大倍数降低到原来的30%,RL=5 k时:Au1=-185,Au2=0.99,ri2=173 k,RL=1 k时:Au1=-174,Au2=0.97,ri2=76 k,1.输出接射极输出器时的带负载能力:,可见输出级接射极输出器后,可稳定放大倍数Au。,3.若信号经射极输出器后,再经放大后放大电路一输出,求放大倍数Aus。,Au2=-93 ri2=1.52 k,Au1=0.98 ri=101 k,输入不接射极输出器时:,可见输入级接射极输出器后,由于从信号源取的信号增加,从而可提高整个放大电路的放大倍数Aus。,思考题:若首级接射极输出器、中间级接共射放大电路、末级接射极输出器,射极输出器和共射放大电路的参数同前。求该三级放大电路的放大倍数Au、Aus、ri和ro。,1=100,2=60,3=100,1=100,2=60,3=100,rbe1=2.36 k,rbe2=1.62 k,rbe3=2.36 k,RL=5 k时:ri2=173 k,Au2=-185,Au3=0.99,RL=1 k时:ri2=76 k,Au2=-174,Au3=0.97,RL=5 k时:ri2=173 k,Au2=-185,Au3=0.99,RL=1 k时:ri2=76 k,Au2=-174,Au3=0.97,,RS=20k,,RL=5 k时:,RL=1 k时:,例2:设 gm=3mA/V,=50,rbe=1.7k,求:总电压放大倍数、输入电阻、输出电阻。,(1)估算各级静态工作点:(略),(2)动态分析:,微变等效电路,首先计算第二级的输入电阻:ri2=R3/R4/rbe=82/43/1.7=1.7 k,第二步:计算各级电压放大倍数,第三步:计算输入电阻、输出电阻,ri=R1/R2=3/1=0.75M,ro=RC=10k,第四步:计算总电压放大倍数,Au=Au1Au2=(-4.4)(-147)=647,阻容耦合电路的频率特性:,耦合电容造成,三极管结电容造成,采用直接耦合的方式可放大缓慢变化的信号,扩大通频带。下面将要介绍的差动放大器即采用直接耦合方式。,阻容耦合电路缺点:不能放大直流信号。,四、戴维南定理,任何一个含源线性二端网络可以等效成为一个电压源,这个电压源的电动势E等于该含源二端网络的开路电压(即该二端网络与外电路断开时其两端点之间的电压),而内阻R则等于此二端网络内部所有电源都为零时(即全部电压源短路,电流源开路)的两个输出端点之间的等效电阻。,END,

    注意事项

    本文(放大器的基本原理经典.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开