欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    排列组合题的几种.ppt

    • 资源ID:6164348       资源大小:554.50KB        全文页数:17页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    排列组合题的几种.ppt

    1,解排列组合题的几种常用方法(一),北师大版高中数学2-3第一章计数原理,法门高中姚连省制作,2,一、教学目标:(1)掌握排列组合一些常见的题型及解题方法,能够运用两个原理及排列组合概念解决排列组合问题;(2)提高合理选用知识解决问题的能力二、教学重点、难点:排列、组合综合问题三、教学方法:探析归纳,讨论交流四、教学过程,3,完成一件事,有n类办法,在第1类办法中有 m1种不同的方法,在第2类办法中有m2 种不同的方法,在第n类办法中有mn种不同的方法,那么完成这件事共有:种不同的方法,复习巩固,1.分类计数原理(加法原理),4,完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2 种不同的方法,做第n步有mn种不同的方法,那么完成这件事共有:种不同的方法,2.分步计数原理(乘法原理),分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件,3.分类计数原理分步计数原理区别,分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。,5,练习:,1.把6名实习生分配到7个车间实习,共有 多少种不同的分法,解:完成此事共分六步:把第一名实习生分配 到车间有 种分法.,7,分步计数原理的应用,6,排列与组合:,从n个不同元素中取出m个元素,按一定的顺序排成一列,从n个不同元素中取出m个元素,把它并成一组,所有排列的的个数,所有组合的个数,7,(一).特殊元素和特殊位置优先策略,例1.由0,1,2,3,4,5可以组成多少个没有重复数字 五位奇数.,解:由于末位和首位有特殊要求,应该优先安 排,以免不合要求的元素占了这两个位置,先排末位共有_,然后排首位共有_,最后排其它位置共有_,位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件,8,练习题,从6名短跑运动员中选出4人参加4100m接力.试求满足下列条件的参赛方案各有多少种?(1)甲不能跑第一棒和第四棒;(2)甲不跑第一棒,乙不能跑第四棒.,9,(二).相邻元素捆绑策略,例2.7人站成一排,其中甲乙相邻且丙丁相 邻,共有多少种不同的排法.,解:可先将甲乙两元素捆绑成整体并看成 一个复合元素,同时丙丁也看成一个 复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。,要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列.,10,练习题,用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,这两个奇数之间,这样的五位数有多少个?,11,(三).不相邻问题插空策略,例3.一个晚会的节目有4个舞蹈,2个相声,3个 独唱,舞蹈节目不能连续出场,则节目的出 场顺序有多少种?,解:分两步进行第一步排2个相声和3个独唱共 有 种,,元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两端,12,练习题,某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为(),20,13,(四).元素相同问题隔板策略,例4.有10个运动员名额,在分给7个班,每班至少一个,有多少种分配方案?,解:因为10个名额没有差别,把它们排成一排。相邻名额之间形成个空隙。,在个空档中选个位置插个隔板,可把名额分成份,对应地分给个班级,每一种插板方法对应一种分法共有_种分法。,将n个相同的元素分成m份(n,m为正整数),每份至少一个元素,可以用m-1块隔板,插入n个元素排成一排的n-1个空隙中,所有分法数为,14,练习题,10个相同的球装5个盒中,每盒至少一个,有多少装法?,2.x+y+z+w=100求这个方程组的正整数解 的组数,15,(五).正难则反总体淘汰策略,例5.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三 个数,使其和为不小于10的偶数,不同的 取法有多少种?,解:这问题中如果直接求不小于10的偶数很 困难,可用总体淘汰法。,再淘汰和小于10的偶数共_,符合条件的取法共有_,9,+,16,我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的抽法有多少种?,(五).正难则反总体淘汰策略,有些排列组合问题,正面直接考虑比较复杂,而它的反面往往比较简捷,可以先求出它的反面,再从整体中淘汰.,17,回顾小结:(1)解决有关计数的应用题时,要仔细分析事件的发生、发展过程,弄清问题究竟是排列问题还是组合问题,还是应直接利用分类计数原理或分步计数原理解决一个较复杂的问题往往是分类与分步交织在一起,要准确分清,容易产生的错误是遗漏和重复计数;(2)解决计数问题的常用策略有:(1)特殊元素优先安排;(2)排列组合混合题要先选(组合)后排;(3)相邻问题捆绑处理(先整体后局部);(4)不相邻问题插空处理;(5)顺序一定问题除法处理;(6)正难则反,合理转化(六)课外作业:课本P20页1、2、3;习题1-4中A组1、2五、教后反思:,

    注意事项

    本文(排列组合题的几种.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开