排列组合特殊元素和特殊位置讲解.ppt
2.特殊元素和特殊位置问题,例:七个同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?,解法一:第一步 从(除去甲、乙)其余的5位同学中选2位同学站在排头和排尾有A52种方法;第二步 从余下的5位同学中选5位进行排列(全排列)有A55种方法,所以一共有A52 A55 2400种排列方法,解法二:若甲站在排头有A66种方法;若乙站在排尾有A66种方法;若甲站在排头且乙站在排尾则有A55种方法所以甲不能站在排头,乙不能排在排尾的排法共有 A77 2 A66 A55=2400种,小 结一:对于“在”与“不在”等有特殊元素或特殊位置的排列问题,通常是先排特殊元素或特殊位置,称为优先处理特殊元素(位置)法(优限法),优限法,特殊元素和特殊位置优先策略,例1.由0,1,2,3,4,5可以组成多少个没有重复数字 五位奇数.,解:由于末位和首位有特殊要求,应该优先安 排,以免不合要求的元素占了这两个位置,先排末位共有_,然后排首位共有_,最后排其它位置共有_,位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件,回目录,“特殊元素、特殊位置优先安排法”,对于特殊元素的排列组合问题,一般应先考虑特殊元素,再考虑其它元素。,例2 用0,1,2,3,4这五个数,组成没有重复数字的三位数,其中偶数共有()A.24 B.30 C.40 D.60,分析:由于该三位数是偶数,所以末尾数字必须是偶数,又因为0不能排首位,故0就是其中的“特殊”元素,应优先安排。按0排在末尾和不排在末尾分为两类;,0排在末尾时,有 个;0不排在末尾时,先用偶数排个位,再排百位,最后排十位有 个;由分类计数原理,共有偶数 30 个.,B,解题技巧,回目录,学生要从六门课中选学两门:(1)有两门课时间冲突,不能同时学,有几种选法?(2)有两门特别的课,至少选学其中的一门,有几种选法?,回目录,(1)有两门课时间冲突,不能同时学,有几种选法?,回目录,解法一:,解法二:,(2)有两门特别的课,至少选学其中的一门,有几种选法?,特殊元素(或位置)优先安排,例 将5列车停在5条不同的轨道上,其中a列车不停在第一轨道上,b列车不停在第二轨道上,那么不同的停放方法有()(A)120种(B)96种(C)78种(D)72种,解:,7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?,练习题,(1)0,1,2,3,4,5这六个数字可组成多少个无重复数字的五位数?,(2)0,1,2,3,4,5可组成多少个无重复数字的五位奇数?,练 习,(3)(2005 北京文)五个工程队承建某项工程的5个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有()种。(4)(2005 全国II 理)在由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,不能被整除的数共有_个,解:不能被5整除的有两种情况:情况1、首位为5有 种,情况2、首位不是5的有 种,故在由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,不能被整除的数共有+=192(个),192,小结:1、“在”与“不在”可以相互转化。解决某些元素在某些位置上用“定位法”,解决某些元素不在某些位置上一般用“间接法”或转化为“在”的问题求解。,2、排列组合应用题极易出现“重”、“漏”现象,而重”、“漏”错误常发生在该不该分类、有无次序的问题上。为了更好地防“重”堵“漏”,在做题时需认真分析自己做题思路,也可改变解题角度,利用一题多解核对答案,回目录,