高等数学上泰勒公式.ppt
1,二、几个初等函数的麦克劳林公式,一、泰勒公式的建立,三、泰勒公式的应用,应用,用多项式近似表示函数,理论分析,近似计算,5.3 泰勒(Taylor)公式,2,特点:,一、泰勒公式的建立,以直代曲,在微分应用中已知近似公式:,需要解决的问题,如何提高精度?,如何估计误差?,x 的一次多项式,3,1.求 n 次近似多项式,要求:,故,令,则,4,2.余项估计,令,(称为余项),则有,5,6,公式 称为 的 n 阶泰勒公式.,公式 称为n 阶泰勒公式的拉格朗日余项.,泰勒中值定理:,阶的导数,时,有,其中,则当,7,公式 称为n 阶泰勒公式的佩亚诺(Peano)余项.,在不需要余项的精确表达式时,泰勒公式可写为,注意到,*可以证明:,式成立,8,特例:,(1)当 n=0 时,泰勒公式变为,(2)当 n=1 时,泰勒公式变为,给出拉格朗日中值定理,可见,误差,9,称为麦克劳林(Maclaurin)公式.,则有,在泰勒公式中若取,则有误差估计式,若在公式成立的区间上,由此得近似公式,10,二、几个初等函数的麦克劳林公式,其中,11,其中,12,类似可得,其中,13,其中,14,已知,其中,类似可得,15,三、泰勒公式的应用,1.在近似计算中的应用,误差,M 为,在包含 0,x 的某区间上的上界.,需解问题的类型:,1)已知 x 和误差限,要求确定项数 n;,2)已知项数 n 和 x,计算近似值并估计误差;,3)已知项数 n 和误差限,确定公式中 x 的适用范围.,16,已知,例1.计算无理数 e 的近似值,使误差不超过,解:,令 x=1,得,由于,欲使,由计算可知当 n=9 时上式成立,因此,的麦克劳林公式为,17,说明:注意舍入误差对计算结果的影响.,本例,若每项四舍五入到小数点后 6 位,则,各项舍入误差之和不超过,总误差为,这时得到的近似值不能保证误差不超过,因此计算时中间结果应比精度要求多取一位.,18,例2.用近似公式,计算 cos x 的近似值,使其精确到 0.005,试确定 x 的适用范围.,解:,近似公式的误差,令,解得,即当,时,由给定的近似公式计算的结果,能准确到 0.005.,19,2.利用泰勒公式求极限,例3.求,解:,由于,用洛必塔法则不方便!,20,3.利用泰勒公式证明不等式,例4.证明,证:,21,内容小结,1.泰勒公式,其中余项,当,时为麦克劳林公式.,22,2.常用函数的麦克劳林公式,3.泰勒公式的应用,(1)近似计算,(3)其他应用,求极限,证明不等式 等.,(2)利用多项式逼近函数,23,泰勒多项式逼近,24,泰勒多项式逼近,25,思考与练习,计算,解:,原式,26,由题设对,证:,备用题 1.,有,且,27,下式减上式,得,令,28,两边同乘 n!,=整数+,假设 e 为有理数,(p,q 为正整数),则当 时,等式左边为整数;,矛盾!,2.证明 e 为无理数.,证:,故 e 为无理数.,等式右边不可能为整数.,