欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    概率与抽样分布.ppt

    • 资源ID:6137191       资源大小:1.39MB        全文页数:109页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    概率与抽样分布.ppt

    第 4 章 概率与抽样分布,4.1 概率与概率分布基本概念4.2 离散型随机变量的概率分布4.3 连续型随机变量的概率分布4.4 抽样分布 4.4.1 一个总体参数推断时样本统计量分布 4.4.2 两个总体参数推断时样本统计量分布,学习目标,定义试验、事件、样本空间、概率定义和解释随机变量及其分布3.计算离散型随机变量的概率和概率分布4.计算连续型随机变量的概率5.掌握抽样分布6.掌握单总体参数推断时样本统计量的分布7.掌握双总体参数推断时样本统计量的分布,4.1 概率与概率分布基本概念,4.1.1 概率4.1.2 随机变量4.1.3 分布,4.1.1 概率,试验、事件和样本空间,试 验(experiment),概念:对试验对象进行一次观察或测量的过程 掷一颗骰子,观察其出现的点数从一副52张扑克牌中抽取一张,并观察其结果(纸牌的数字或花色)试验的特点可以在相同的条件下重复进行每次试验的可能结果可能不止一个,但试验的所有可能结果在试验之前是确切知道的在试验结束之前,不能确定该次试验的确切结果,事件(event),事件:观察或实验的结果叫事件掷一颗骰子出现的点数为3用大写字母A,B,C,表示随机事件(random event):每次试验可能出现也可能不出现的事件掷一颗骰子可能出现的点数,3.必然事件(certain event):每次试验一定出现的事件,用表示掷一颗骰子出现的点数小于74.不可能事件(impossible event):每次试验一定不出现的事件,用表示掷一颗骰子出现的点数大于6,样本空间,简单事件(simple event):不能被分解成两个或更多个事件的事件,也称为基本事件。抛一枚均匀硬币,“出现正面”和“出现反面”在一次试验中只能观察到一个且仅有一个简单事件。,样本空间,样本空间(sample Space)一次试验中所有简单事件的全体用表示例如:在掷一颗骰子的试验中,样本空间表示为:1,2,3,4,5,6在投掷硬币的试验中,正面,反面,(随机)事件的概率,事件的概率(probability),事件A的概率是一个介于0和1之间的一个值,用以度量试验完成时事件A发生的可能性大小,记为P(A).,概率的古典定义,如果某一随机试验的结果有限,而且各个结果在每次试验中出现的可能性相同,则事件A发生的概率为该事件所包含的基本事件个数 m 与样本空间中所包含的基本事件个数 n 的比值,记为,概率的古典定义(例题分析),【例】某钢铁公司所属三个工厂的职工人数如下表。从 该公司中随机抽取1人,(1)该职工为男性的概率(2)该职工为炼钢厂职工的概率,概率的古典定义(例题分析),解:(1)用A 表示“抽中的职工为男性”这一事件;A为全公司男职工的集合;基本空间为全公司职工的集合。则,(2)用B 表示“抽中的职工为炼钢厂职工”;B为炼钢厂 全体职工的集合;基本空间为全体职工的集合。则,概率的统计定义,在相同条件下进行n次随机试验,事件A出现 m 次,则比值 m/n 称为事件A发生的频率。随着n的增大,该频率围绕某一常数P上下摆动,且波动的幅度逐渐减小,趋向于稳定,这个频率的稳定值即为事件A的概率,记为,概率的统计定义(例题分析),【例】:某工厂为节约用电,规定每天的用电量指标为1000度。按照上个月的用电记录,30天中有12天的用电量超过规定指标,若第二个月仍没有具体的节电措施,试问该厂第一天用电量超过指标的概率。解:上个月30天的记录可以看作是重复进行了30次试验,试验A表示用电超过指标出现了12次。根据概率的统计定义有,主观概率定义,对一些无法重复的试验,确定其结果的概率只能根据以往的经验人为确定概率是一个决策者对某事件是否发生,根据个人掌握的信息对该事件发生可能性的判断,4.1.2 随机变量,随机变量(random variables),一次试验的结果的数值性描述一般用 X,Y,Z 来表示例如:投掷两枚硬币出现正面的数量根据取值情况的不同分为离散型随机变量和连续型随机变量,离散型随机变量(discrete random variables),随机变量 X 取有限个值或所有取值都可以逐个列举出来 x1,x2,以确定的概率取这些不同的值离散型随机变量的一些例子,连续型随机变量(continuous random variables),可以取一个或多个区间中任何值 所有可能取值不可以逐个列举出来,而是取数轴上某一区间内的任意点连续型随机变量的一些例子,4.1.3 分布,分布(概率分布):随机变量取一切可能值或范围的概率或概率规律称为概率分布。,4.2 离散型随机变量概率分布,4.2.1 离散型随机变量的概率分布4.2.2 离散型随机变量的数学期望和方差4.2.3 几种常用的离散型概率分布,离散型随机变量的概率分布,离散型随机变量的概率分布,列出离散型随机变量X的所有可能取值列出随机变量取这些值的概率通常用下面的表格来表示,称该表格形式为离散型随机变量X的概率分布,其中:P(X=xi)=pi称为离散型随机变量的概率函数 pi0;,离散型随机变量的概率分布(例题分析),【例】投掷一颗骰子后出现的点数是一个离散型随机变量。写出掷一枚骰子出现点数的概率分布,概率分布,离散型随机变量的概率分布(例题分析),【例】一部电梯在一周内发生故障的次数X及相应的概率如下表,一部电梯一周发生故障的次数及概率分布,(1)确定的值(2)求正好发生两次故障的概率(3)求最多发生两次故障的概率,离散型随机变量的概率分布(例题分析),解:(1)由于0.10+0.25+0.35+=1 所以,=0.30(2)P(X=2)=0.35(3)P(X 2)=0.10+0.25+0.35=0.70,离散型随机变量的数学期望和方差,离散型随机变量的数学期望(expected value),离散型随机变量X的所有可能取值xi与其取值相对应的概率pi乘积之和描述离散型随机变量取值的集中程度记为 或E(X)计算公式为,离散型随机变量的方差(variance),随机变量X的每一个取值与期望值的离差平方和的数学期望,记为 2 或D(X)描述离散型随机变量取值的分散程度计算公式为方差的平方根称为标准差,记为 或,离散型数学期望和方差(例题分析),【例】一家电脑配件供应商声称,他所提供的配件100个中拥有次品的个数及概率如下表,每100个配件中的次品数及概率分布,求该供应商次品数的数学期望和标准差,几种常用的离散型概率分布,常用离散型概率分布,二项分布泊松分布,二项试验(伯努利试验),二项分布与伯努利试验有关贝努利试验满足下列条件一次试验只有两个可能结果,即“成功”和“失败”“成功”是指我们感兴趣的某种特征一次试验“成功”的概率为p,失败的概率为q=1-p,且概率p对每次试验都是相同的 试验是相互独立的,并可以重复进行n次 在n次试验中,“成功”的次数对应一个离散型随机变量X,二项分布(Binomial distribution),重复进行 n 次试验,出现“成功”的次数的概率分布称为二项分布,记为XB(n,p)设X为 n 次重复试验中出现成功的次数,X 取 x 的概率为,二项分布(数学期望和方差),数学期望=E(X)=np方差 2=D(X)=npq,二项分布(例题分析),【例】已知一批产品的次品率为4%,从中任意有放回地抽 取5个。求5个产品中:(1)没有次品的概率是多少?(2)恰好有1个次品的概率是多少?(3)有3个以下次品的概率是多少?,二项分布(例题分析),【例】已知一批产品的次品率为4%,从中任意有放回地抽 取5个。求5个产品中:出现次品的期望值、方差,数学期望=E(X)=np方差 2=D(X)=npq,泊松分布(Poisson distribution),1837年法国数学家泊松(D.Poisson,17811840)首次提出 用于描述在一指定时间范围内或在一定的长度、面积、体积之内每一事件出现次数的分布泊松分布的例子一定时间段内,某航空公司接到的订票电话数一定时间内,到车站等候公共汽车的人数一定路段内,路面出现大损坏的次数一定时间段内,放射性物质放射的粒子数一匹布上发现的疵点个数一定页数的书刊上出现的错别字个数,泊松分布(概率分布函数),给定的时间间隔、长度、面 积、体积内“成功”的平均数e=2.71828 x 给定的时间间隔、长度、面 积、体积内“成功”的次数,泊松分布(数学期望和方差),数学期望 E(X)=方差 D(X)=,泊松分布(例题分析),【例】假定某航空公司预订票处平均每小时接到42次订票电话,那么10分钟内恰好接到6次电话的概率是多少?,解:设X=10分钟内航空公司预订票处接到的电话次数,4.3 连续型概率分布,4.3.1 概率密度函数4.3.2 正态分布,概率密度函数,连续型随机变量的概率分布,连续型随机变量可以取某一区间或整个实数轴上的任意一个值它取任何一个特定的值的概率都等于0不能列出每一个值及其相应的概率通常研究它取某一区间值的概率用分布函数的形式和概率密度函数的形式来描述,由随机变量的定义可知Xx是一随机事件,可以对它求概率,记F(x)=P(Xx),该函数就是随机变量的分布函数,分布函数的导数称为密度函数,记作f(x);,概率密度函数(probability density function),设X为一连续型随机变量,x 为任意实数,X的概率密度函数记为f(x),它满足条件,注意:f(x)不是概率,概率密度函数,在平面直角坐标系中画出f(x)的图形,则对于任何实数 x1 x2,P(x1 X x2)是该曲线下从x1 到 x2的面积,概率是曲线下的面积,分布函数与密度函数的图示,密度函数曲线下的面积等于1分布函数是曲线下小于 x0 的面积,连续型随机变量的期望和方差,连续型随机变量的数学期望方差,正态分布,正态分布(normal distribution),由C.F.高斯(Carl Friedrich Gauss,17771855)作为描述误差相对频数分布的模型而提出 描述连续型随机变量的最重要的分布许多现象都可以由正态分布来描述;许多有用的分布可以由正态分布推导出来;正态分布在一定条件下还是其他分布的近似分布如:大样本下的 t 分布与正态分布近似;,概率密度函数,=正态随机变量X的均值=正态随机变量X的方差=3.1415926;e=2.71828x=随机变量的取值(-x),f(x),正态分布概率密度对应的图形称为正态曲线,正态曲线的性质,图形是关于x=对称钟形曲线,且峰值在x=处均值和标准差一旦确定,分布的具体形式也惟一确定,不同参数正态分布构成一个完整的“正态分布族”均值可取实数轴上的任意数值,决定正态曲线的具体位置;标准差决定曲线的“陡峭”或“扁平”程度。越大,正态曲线扁平;越小,正态曲线越高陡峭当X的取值向横轴左右两个方向无限延伸时,曲线的两个尾端也无限渐近横轴,理论上永远不会与之相交正态随机变量在特定区间上的取值概率由正态曲线下的面积给出,而且其曲线下的总面积等于1,和 对正态曲线的影响,正态分布的概率,标准正态分布(standardize the normal distribution),标准正态分布的概率密度函数,随机变量具有均值为0,标准差为1的正态分布任何一个一般的正态分布,可通过下面的线性变换转化为标准正态分布,标准正态分布的分布函数,标准正态分布,标准正态分布表的使用,对于标准正态分布,即ZN(0,1),有P(a Zb)b aP(|Z|a)2 a 1对于负的 z,可由(-z)z得到对于一般正态分布,即XN(,),有,标准化的例子 P(5 X 6.2),标准化的例子P(2.9 X 7.1),正态分布(例题分析),【例】假定某公司职员每周的加班津贴服从均值为50元、标准差为10元的正态分布,那么全公司中有多少比例的职员每周的加班津贴会超过70元,又有多少比例的职员每周的加班津贴在40元到60元之间呢?,解:设=50,=10,XN(50,102),4.4 抽样分布,样本统计量的概率分布,是一种理论分布在重复选取容量为n的样本时,由该统计量的所有可能取值形成的相对频数分布 随机变量是 样本统计量样本均值,样本比例,样本方差等结果来自容量相同的所有可能样本提供了样本统计量长远而稳定的信息,是进行推断的理论基础,也是抽样推断科学性的重要依据,抽样分布(sampling distribution),抽样分布的形成过程(sampling distribution),4.4.1 样本统计量的抽样分布(一个总体参数推断时),样本均值的抽样分布样本比例的抽样分布样本方差的抽样分布,样本均值的抽样分布,在重复选取容量为n的样本时,由样本均值的所有可能取值形成的相对频数分布一种理论概率分布推断总体均值的理论基础,样本均值的抽样分布,样本均值的抽样分布(例题分析),【例】设一个总体,含有4个元素(个体),即总体单位数N=4。4 个个体分别为x1=1,x2=2,x3=3,x4=4。总体的均值、方差及分布如下,均值和方差,样本均值的抽样分布(例题分析),现从总体中抽取n2的简单随机样本,在重复抽样条件下,共有42=16个样本。所有样本的结果为,样本均值的抽样分布(例题分析),计算出各样本的均值,如下表。并给出样本均值的抽样分布,样本均值的分布与总体分布的比较(例题分析),=2.5 2=1.25,总体分布,样本均值的抽样分布与中心极限定理,当总体服从正态分布N(,2)时,来自该总体的所有容量为n的样本的均值x也服从正态分布,x 的数学期望为,方差为2/n。即xN(,2/n),中心极限定理(central limit theorem),中心极限定理:设从均值为,方差为 2的一个任意总体中抽取容量为n的样本,当n充分大时,样本均值的抽样分布近似服从均值为、方差为2/n的正态分布,中心极限定理(central limit theorem),x 的分布趋于正态分布的过程,抽样分布与总体分布的关系,样本均值的数学期望样本均值的方差重复抽样不重复抽样,样本均值的抽样分布(数学期望与方差),样本均值的分布与总体分布的比较(例题分析),=2.5 2=1.25,总体分布,样本均值的抽样分布(数学期望与方差),比较及结论:1.样本均值的均值(数学期望)等于总体均值 2.样本均值的方差等于总体方差的1/n,均值的抽样标准误差,所有可能的样本均值的标准差,测度所有样本均值的离散程度也称标准误差小于总体标准差计算公式为,样本比例的抽样分布,总体(或样本)中具有某种属性的单位与全部单位总数之比不同性别的人与全部人数之比合格品(或不合格品)与全部产品总数之比总体比例可表示为样本比例可表示为,比例(proportion),具有某种属性的单位个数,样本比例的抽样分布,在重复选取容量为n的样本时,由样本比例的所有可能取值形成的相对频数分布称为样本比例的抽样分布。一种理论概率分布当样本容量很大时,样本比例的抽样分布可用正态分布近似 推断总体比例的理论基础,样本比例的数学期望样本比例的方差重复抽样不重复抽样,样本比例的抽样分布(数学期望与方差),样本方差的抽样分布,样本方差的分布,在重复选取容量为n的样本时,由样本方差的所有可能取值形成的相对频数分布对于来自正态总体的简单随机样本,则比值 的抽样分布服从自由度为(n-1)的2分布,即,由阿贝(Abbe)于1863年首先给出,后来由海尔墨特(Hermert)和卡皮尔逊(KPearson)分别于1875年和1900年推导出来设,则令,则 Y 服从自由度为1的2分布,即 当总体,从中抽取容量为n的样本,则,2分布(2 distribution),分布的变量值始终为正 分布的形状取决于其自由度n的大小,通常为不对称的正偏分布,但随着自由度的增大逐渐趋于对称 期望为:E(2)=n,方差为:D(2)=2n(n为自由度)可加性:若U和V为两个独立的2分布随机变量,U服从2(n1),V服从2(n2),则U+V这一随机变量服从自由度为n1+n2的2分布,2分布(性质和特点),c2分布(图示),4.4.2 样本统计量的抽样分布(两个总体参数推断时),两个样本均值之差的抽样分布两个样本比例之差的抽样分布两个样本方差比的抽样分布,两个样本均值之差的抽样分布,两个总体都为正态分布,即,两个样本均值之差 的抽样分布服从正态分布,其分布的数学期望为两个总体均值之差方差为各自的方差之和,两个样本均值之差的抽样分布,两个样本均值之差的抽样分布,两个样本比例之差的抽样分布,两个总体都服从二项分布分别从两个总体中抽取容量为n1和n2的独立样本,当两个样本都为大样本时,两个样本比例之差的抽样分布可用正态分布来近似分布的数学期望为方差为各自的方差之和,两个样本比例之差的抽样分布,两个样本方差比的抽样分布,由统计学家费希尔()提出的,以其姓氏的第一个字母来命名则设若U为服从自由度为n1的2分布,即U2(n1),V为服从自由度为n2的2分布,即V2(n2),且U和V相互独立,则 称F为服从自由度n1和n2的F分布,记为,F分布(F distribution),F分布(图示),不同自由度的F分布,两个样本方差比的抽样分布,两个总体都为正态分布,即X1N(1,12),X2N(2,22)从两个总体中分别抽取容量为n1和n2的独立样本两个样本方差比的抽样分布,服从分子自由度为(n1-1),分母自由度为(n2-1)的F分布,即,由正态分布导出的几个重要分布,2分布t 分布F 分布,t 分布,t分布也称为学生氏分布,是高塞特提出的。,设随机变量,且X与Y独立,则,其分布称为t分布,其中n为自由度。,t分布的提出对于小样本理论和应用有着重要的促进作用。,t 分布,t 分布是类似正态分布的一种对称分布,它通常要比正态分布平坦和分散。一个特定的分布依赖于称之为自由度的参数。随着自由度的增大,分布也逐渐趋于正态分布,一个与t分布有关的抽样分布:,t 分布,高塞特()于1908年在一篇以“Student”(学生)为笔名的论文中首次提出 t 分布是类似正态分布的一种对称分布,它通常要比正态分布平坦和分散一个特定的分布依赖于称之为自由度的参数。随着自由度的增大,分布也逐渐趋于正态分布,t 分布图示,THANKS,

    注意事项

    本文(概率与抽样分布.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开