欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    导数的几何意义(87).ppt

    • 资源ID:6135987       资源大小:291KB        全文页数:18页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    导数的几何意义(87).ppt

    导数的几何意义,以平均速度代替瞬时速度,然后通过取极限,,从瞬时速度的近似值过渡到瞬时速度的精确值。,我们把物体在某一时刻的速度称为瞬时速度.,函数y=f(x)在x=x0处的瞬时变化率是:,由导数的意义可知,求函数y=f(x)在点x0处的导数的基本方法是:,注意:这里的增量不是一般意义上的增量,它可正也可负.自变量的增量x的形式是多样的,但不论x选择 哪种形式,y也必须选择与之相对应的形式.,回顾,平均变化率,函数y=f(x)的定义域为D,x1.x2D,f(x)从x1到x2平均变化率为:,平均变化率表示什么?,O,A,B,x,y,Y=f(x),x1,x2,f(x1),f(x2),x2-x1=x,f(x2)-f(x1)=y,直线AB的斜率kAB,那么瞬时变化率呢?,引入:,切线问题:,(1)对于简单的曲线,如圆和圆锥曲线,它们的切线是如何定义的?,(2)与曲线只有一个交点的直线是否一定是曲线的切线?,(3)曲线的切线与曲线是否只有一个交点?,P,Q,切线,T,导数的几何意义:,我们发现,当点Q沿着曲线无限接近点P即x0时,割线PQ如果有一个极限位置PT.则我们把直线PT称为曲线在点P处的切线.,设切线的倾斜角为,那么当x0时,割线PQ的斜率,称为曲线在点P处的切线的斜率.,即:,这个概念:提供了求曲线上某点切线的斜率的一种方法;切线斜率的本质函数在x=x0处的导数.,注意:曲线在某点处的切线:(1)与该点的位置有关;(2)要根据割线是否有极限位置来判断与求解.如有极限,则在此点有切线,且切线是唯一的;如不存在,则在此点处无切线;(3)曲线的切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多个.,因此,切线方程为y-2=2(x-1),即y=2x.,求曲线在某点处的切线方程的基本步骤:求出P点的坐标;利用切线斜率的定义求出切线的斜率;利用点斜式求切线方程.,在不致发生混淆时,导函数也简称导数,函数导函数,由函数f(x)在x=x0处求导数的过程可以看到,:f(x0)是一个确定的数.那么,当x变化时,便是x的一个函数,我们叫它为f(x)的导函数.即:,练习:如图已知曲线,求:(1)点P处的切线的斜率;(2)点P处的切线方程.,即点P处的切线的斜率等于4.,(2)在点P处的切线方程是y-8/3=4(x-2),即12x-3y-16=0.,如何求函数y=f(x)的导数?,小结:,a.导数是从众多实际问题中抽象出来的具有相同的数 学表达式的一个重要概念,要从它的几何意义和物 理意义了认识这一概念的实质,学会用事物在全过 程中的发展变化规律来确定它在某一时刻的状态。,b.要切实掌握求导数的三个步骤:(1)求函数的增量;(2)求平均变化率;(3)取极限,得导数。,(3)函数f(x)在点x0处的导数 就是导函数 在x=x0处的函数值,即。这也是 求函数在点x0处的导数的方法之一。,小结:,(2)函数的导数,是对某一区间内任意点x而言的,就是函数f(x)的导函数。,(1)函数在一点处的导数,就是在该点的函数值的 改变量与自变量的改变量之比的极限,它是一个常 数,不是变数。,c.弄清“函数f(x)在点x0处的导数”、“导函数”、“导数”之间的区别与联系。,(1)求出函数在点x0处的变化率,得到曲线 在点(x0,f(x0)的切线的斜率。,(2)根据直线方程的点斜式写出切线方程,即,d.求切线方程的步骤:,小结:,无限逼近的极限思想是建立导数概念、用导数定义求函数的导数的基本思想,丢掉极限思想就无法理解导 数概念。,

    注意事项

    本文(导数的几何意义(87).ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开