初二数学全等三角形动点专题.ppt
全等三角形之动点问题,1、如图,在直角三角形ABC中,B90,AB5cm,BC6cm,点P从点B开始沿BA以1cms的速度向点A运动,同时,点Q从点B开始沿BC以2cms的速度向点C 运动几秒后,PBQ的面积为9cm2?,2、如图,在ABC中,B90,AB6cm,BC8cm,点P从点A出发沿AB边向点B以1cm/秒的速度移动,点Q从点B出发沿BC边向点C以2cm/秒的速度移动(1)如果P、Q分别从A、B同时出发,经过多长时间,PBQ的面积为8cm2?(2)如果P、Q分别从A、B同时出发,当P、Q两点运动几秒时,PQ有最小值,并求这个最小值。,3、如图所示,已知ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速运动,其中点P运动的速度是1m/s,点Q运动的速度是2m/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为ts,解答下列问题:(1)填空:ABC的面积为(2)当点Q到达点C时,PQ与AB的位置关系如何?请说明理由(3)在点P与点Q的运动过程中,BPQ是否能成为等边三角形?若能,请求出t,若不能,请说明理由(4)当BPQ是直角三角形时,求t的值,如图(1),AB4cm,ACAB,BDAB,ACBD3cm点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动它们运动的时间为t(s)(1)若点Q的运动速度与点P的运动速度相等,当t1时,ACP与BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“ACAB,BDAB”为改“CABDBA60”,其他条件不变设点Q的运动速度为x cm/s,是否存在实数x,使得ACP与BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由,4、如图(1),AB4cm,ACAB,BDAB,ACBD3cm点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动它们运动的时间为t(s)(1)若点Q的运动速度与点P的运动速度相等,当t1时,ACP与BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“ACAB,BDAB”为改“CABDBA60”,其他条件不变设点Q的运动速度为x cm/s,是否存在实数x,使得ACP与BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由,5、如图,ABC中,ACB=90,AC=6,BC=8,点P从A点出发沿A-C-B路径向终点运动,终点为B点;点Q从B点出发沿B-C-A路径向终点运动,终点为A点点P和Q分别以1和3的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P和Q作PEl于E,QFl于F,问:点P运动多少时间时,PEC与QFC全等?请说明理由。,6、如图,已知三角形ABC中,AB=AC=24厘米,角ABC=角ACB,BC=16,点D为AB的中点。如果点P在线段BC上从4厘米/秒的速度由B向C运动,同时,点Q在线段CA上由C向A运动,当Q的运动速度为多少厘米/秒时,能在某一时刻使三角形BPD与三角形CQP全等.,所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想、数形结合思想、转化思想,课堂小结,