欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    特征提取与选择.ppt

    • 资源ID:6129506       资源大小:2.57MB        全文页数:25页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    特征提取与选择.ppt

    第五章 特征选择和提取,第五章 特征选择和提取,特征选择和提取是模式识别中的一个关键问题前面讨论分类器设计的时候,一直假定已给出了特征向量维数确定的样本集,其中各样本的每一维都是该样本的一个特征;这些特征的选择是很重要的,它影响到分类器的设计及其性能;若对不同的类别,这些特征的差别很大,则比较容易设计出具有较好性能的分类器。,第五章 特征选择和提取,特征选择和提取重要性在很多实际问题中,往往不容易找到那些最重要的特征,或受客观条件的限制,不能对它们进行有效的测量;因此在测量时,由于人们心理上的作用,只要条件许可总希望把特征取得多一些;另外,由于客观上的需要,为了突出某些有用信息,抑制无用信息,有意加上一些比值、指数或对数等组合计算特征;如果将数目很多的测量值不做分析,全部直接用作分类特征,不但耗时,而且会影响到分类的效果,产生“特征维数灾难”问题。,第五章 特征选择和提取,为了设计出效果好的分类器,通常需要对原始的测量值集合进行分析,经过选择或变换处理,组成有效的识别特征;在保证一定分类精度的前提下,减少特征维数,即进行“降维”处理,使分类器实现快速、准确和高效的分类。为达到上述目的,关键是所提供的识别特征应具有很好的可分性,使分类器容易判别。为此,需对特征进行选择。应去掉模棱两可、不易判别的特征;所提供的特征不要重复,即去掉那些相关性强且没有增加更多分类信息的特征。,第五章 特征选择和提取,说明实际上,特征选择和提取这一任务应在设计分类器之前进行。,第五章 特征选择和提取,所谓特征选择,就是从n个度量值集合x1,x2,xn中,按某一准则选取出供分类用的子集,作为降维(m维,mn)的分类特征;所谓特征提取,就是使(x1,x2,xn)通过某种变换,产生m个特征(y1,y2,ym)(mn),作为新的分类特征(或称为二次特征);其目的都是为了在尽可能保留识别信息的前提下,降低特征空间的维数,已达到有效的分类。,第五章 特征选择和提取,以细胞自动识别为例通过图像输入得到一批包括正常细胞和异常细胞的图像,我们的任务是根据这些图像区分哪些细胞是正常的,哪些细胞是异常的;首先找出一组能代表细胞性质的特征,为此可计算细胞总面积总光密度胞核面积核浆比细胞形状核内纹理,第五章 特征选择和提取,以细胞自动识别为例(续)这样产生出来的原始特征可能很多(几十甚至几百个),原始特征空间维数很高,需要降低维数以便分类;一种方式是从原始特征中挑选出一些最有代表性的特征,称为特征选择;另一种方式是用映射(或变换)方法把原始特征变换为较少的特征,称为特征提取。,5.1 模式类别可分性的测度,距离和散布矩阵点到点之间的距离点到点集之间的距离类内距离,5.1 模式类别可分性的测度,距离和散布矩阵类内散布矩阵对属于同一类的模式样本,类内散布矩阵表示各样本点围绕其均值周围的散布情况,这里即为该分布的协方差矩阵。类间距离和类间散布矩阵多类模式集散布矩阵以上各类散布矩阵反映了各类模式在模式空间的分布情况,但它们与分类的错误率没有直接联系。(若与分类错误率联系起来,可采用散度作为类别可分性的度量),5.2 特征选择,设有n个可用作分类的测量值,为了在不降低(或尽量不降低)分类精度的前提下,减小特征空间的维数以减少计算量,需从中直接选出m个作为分类的特征。问题:在n个测量值中选出哪一些作为分类特征,使其具有最小的分类错误?,5.2 特征选择,从n个测量值中选出m个特征,一共有 中可能的选法。一种“穷举”办法:对每种选法都用训练样本试分类一下,测出其正确分类率,然后做出性能最好的选择,此时需要试探的特征子集的种类达到 种,非常耗时。需寻找一种简便的可分性准则,间接判断每一种子集的优劣。对于独立特征的选择准则一般特征的散布矩阵准则,5.2 特征选择,对于独立特征的选择准则类别可分性准则应具有这样的特点,即不同类别模式特征的均值向量之间的距离应最大,而属于同一类的模式特征,其方差之和应最小。假设各原始特征测量值是统计独立的,此时,只需对训练样本的n个测量值独立地进行分析,从中选出m个最好的作为分类特征即可。例:对于i和j两类训练样本的特征选择,5.2 特征选择,讨论:上述基于距离测度的可分性准则,其适用范围与模式特征的概率分布有关。三种不同模式分布的情况(a)中特征xk的分布有很好的可分性,通过它足以分离i和j两种类别;(b)中的特征分布有很大的重叠,单靠xk达不到较好的分类,需要增加其它特征;(c)中的i类特征xk的分布有两个最大值,虽然它与j的分布没有重叠,但计算Gk约等于0,此时再利用Gk作为可分性准则已不合适。因此,假若类概率密度函数不是或不近似正态分布,均值和方差就不足以用来估计类别的可分性,此时该准则函数不完全适用。,5.2 特征选择,一般特征的散布矩阵准则类内、类间和总体的散布矩阵Sw、Sb和StSw的行列式值越小且Sb的行列式值越大,可分性越好。散布矩阵准则J1和J2形式使J1或J2最大的子集可作为所选择的分类特征。注:这里计算的散布矩阵不受模式分布形式的限制,但需要有足够数量的模式样本才能获得有效的结果。,作业,设有如下三类模式样本集1,2和3,其先验概率相等,求Sw和Sb1:(1 0)T,(2 0)T,(1 1)T2:(-1 0)T,(0 1)T,(-1 1)T3:(-1-1)T,(0-1)T,(0-2)T,5.3 离散K-L变换,全称:Karhunen-Loeve变换(卡洛南-洛伊变换)前面讨论的特征选择是在一定准则下,从n个特征中选出k个来反映原有模式。这种简单删掉某n-k个特征的做法并不十分理想,因为一般来说,原来的n个数据各自在不同程度上反映了识别对象的某些特征,简单地删去某些特征可能会丢失较多的有用信息。如果将原来的特征做正交变换,获得的每个数据都是原来n个数据的线性组合,然后从新的数据中选出少数几个,使其尽可能多地反映各类模式之间的差异,而这些特征间又尽可能相互独立,则比单纯的选择方法更灵活、更有效。K-L变换就是一种适用于任意概率密度函数的正交变换。,5.3 离散K-L变换,5.3.1 离散的有限K-L展开展开式的形式如果对c种模式类别ii=1,c做离散正交展开,则对每一模式可分别写成:xi=ai,其中矩阵 取决于所选用的正交函数。对各个模式类别,正交函数都是相同的,但其展开系数向量ai则因类别的不同模式分布而异。K-L展开式的性质K-L展开式的根本性质是将随机向量x展开为另一组正交向量j的线性和,且其展开式系数aj(即系数向量a的各个分量)具有不同的性质。在此条件下,正交向量集j的确定K-L展开式系数的计算步骤,5.3 离散K-L变换,5.3.2 按K-L展开式选择特征K-L展开式用于特征选择相当于一种线性变换。若从K个特征向量中取出m个组成变换矩阵,即=(1 2 m),mK此时,是一个n*m维矩阵,x是n维向量,经过Tx变换,即得到降维为m的新向量。选取变换矩阵,使得降维后的新向量在最小均方差条件下接近原来的向量x,5.3 离散K-L变换,5.3.2 按K-L展开式选择特征结论从K-L展开式的性质和按最小均方差的准则来选择特征,应使Eaj=0。由于Ea=ETx=TEx,故应使Ex=0。基于这一条件,在将整体模式进行K-L变换之前,应先将其均值作为新坐标轴的原点,采用协方差矩阵C或自相关矩阵R来计算特征值。如果Ex0,则只能得到“次最佳”的结果。,5.3 离散K-L变换,5.3.2 按K-L展开式选择特征结论将K-L展开式系数aj(亦即变换后的特征)用yj表示,写成向量形式:y=Tx。此时变换矩阵用m个特征向量组成。为使误差最小,不采用的特征向量,其对应的特征值应尽可能小。因此,将特征值按大小次序标号,即1 2 m n=0若首先采用前面的m个特征向量,便可使变换误差最小。此时的变换矩阵为,5.3 离散K-L变换,5.3.2 按K-L展开式选择特征结论K-L变换是在均方误差最小的意义下获得数据压缩的最佳变换,且不受模式分布的限制。对于一种类别的模式特征提取,它不存在特征分类问题,只是实现用低维的m个特征来表示原来高维的n个特征,使其误差最小,亦即使其整个模式分布结构尽可能保持不变。,5.3 离散K-L变换,5.3.2 按K-L展开式选择特征结论通过K-L变换能获得互不相关的新特征。若采用较大特征值对应的特征向量组成变换矩阵,则能对应地保留原模式中方差最大的特征成分,所以K-L变换起到了减小相关性、突出差异性的效果。在此情况下,K-L变换也称为主成分变换。,5.3 离散K-L变换,5.3.2 按K-L展开式选择特征K-L变换实例原始模式分布特征提取,作业,设有如下两类样本集,其出现的概率相等:1:(0 0 0)T,(1 0 0)T,(1 0 1)T,(1 1 0)T2:(0 0 1)T,(0 1 0)T,(0 1 1)T,(1 1 1)T用K-L变换,分别把特征空间维数降到二维和一维,并画出样本在该空间中的位置。,

    注意事项

    本文(特征提取与选择.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开