复合函数微分法(IV).ppt
,第二节,一元复合函数,求导法则,本节内容:,一、多元复合函数求导的链式法则,二、多元复合函数的全微分,微分法则,机动 目录 上页 下页 返回 结束,多元复合函数的求导法则,第十七章,一、多元复合函数求导的链式法则,定理.若函数,处偏导连续,在点 t 可导,则复合函数,证:设 t 取增量t,则相应中间变量,且有链式法则,机动 目录 上页 下页 返回 结束,有增量u,v,(全导数公式),(t0 时,根式前加“”号),机动 目录 上页 下页 返回 结束,若定理中,说明:,例如:,易知:,但复合函数,偏导数连续减弱为,偏导数存在,机动 目录 上页 下页 返回 结束,则定理结论不一定成立.,推广:,1)中间变量多于两个的情形.例如,设下面所涉及的函数都可微.,2)中间变量是多元函数的情形.例如,机动 目录 上页 下页 返回 结束,又如,当它们都具有可微条件时,有,注意:,这里,表示固定 y 对 x 求导,表示固定 v 对 x 求导,口诀:,分段用乘,分叉用加,单路全导,叉路偏导,与,不同,机动 目录 上页 下页 返回 结束,例1.设,解:,机动 目录 上页 下页 返回 结束,例2.,解:,机动 目录 上页 下页 返回 结束,例3.设,求全导数,解:,注意:多元抽象复合函数求导在偏微分方程变形与,机动 目录 上页 下页 返回 结束,验证解的问题中经常遇到,应掌握这方面问题的求导,技巧与常用导数符号!,二、多元复合函数的全微分,设函数,的全微分为,可见无论 u,v 是自变量还是中间变量,则复合函数,都可微,其全微分表达,形式都一样,这性质叫做全微分形式不变性.,机动 目录 上页 下页 返回 结束,例1.,例 4.,利用全微分形式不变性再解例1.,解:,所以,机动 目录 上页 下页 返回 结束,内容小结,1.复合函数求导的链式法则,“分段用乘,分叉用加,单路全导,叉路偏导”,例如,2.全微分形式不变性,不论 u,v 是自变量还是因变量,机动 目录 上页 下页 返回 结束,备用题,1.已知,求,解:由,两边对 x 求导,得,机动 目录 上页 下页 返回 结束,2.,求,解:由题设,(2001考研),机动 目录 上页 下页 返回 结束,