欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    回归模型的函数形式非线性回归模型的估计.ppt

    • 资源ID:6106163       资源大小:730KB        全文页数:54页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    回归模型的函数形式非线性回归模型的估计.ppt

    第九章 回归模型的函数形式(可线性化的非线性模型的估计),典型的可线性化的非线性模型,1倒数模型2多项式模型3半对数模型:4双(边)对数模型,可线性化模型 在非线性回归模型中,有一些模型经过适当的变量变换或函数变换就可以转化成线性回归模型,从而将非线性回归模型的参数估计问题转化成线性回归模型的参数估计,称这类模型为可线性化模型。1对数模型(或对数-对数模型)模型形式:,lnY=b0+b1lnX+u(对数-对数模型),lnY=b0+b1lnX+u(对数-对数模型)对数-对数模型特点:b1表示当X每变动1个相对量时(而X变动1个相对量,用符号表达就是X/X,用数据表达就是1%),Y将变动一个相对量,这个相对量用 Y/Y表示。然后,将(Y/Y)除以(X/X),即将(Y/Y)除以1%,就等于b1。那么(Y/Y)=b1*1%=b1%也就是说,当X每变动1%时,Y变动的百分比为b1%。注:b1=(Y/Y)/(X/X),模型适用对象:对观测值取对数,将取对数后的观测值(lnx,lny)描成散点图,如果近似为一条直线,则适合于对数线性模型来描述x与y的变量关系。容易推广到模型中存在多个解释变量的情形。例如,柯布道格拉斯生产函数形式:,例 根据表给出的1980-2003年间总产出(用国内生产总值GDP度量,单位:亿元),劳动投入L(用从业人员度量,单位为万人),以及资本投入K(用全社会固定投资度量,单位:亿元)。建立我国的柯布道格拉斯生产函数。表3.4.1 1980-2003年中国GDP、劳动投入与资本投入数据,柯布-道格拉斯生产函数eviews估计过程,数据输入:GDP、L、K,生成新序列 lnGDP,生成新序列lnK,生成新序列lnL,Workfile中可见新生成的序列,利用新生成的序列进行回归,回归输出结果,模型通过整体显著性检验(R2以及F值都很大),变量都通过显著性检验(t值较大),唯有截距项未通过显著性检验,但为了探讨的需要,我们仍然保留截距项。,回归结果的公式表达,0.806863表示产出对劳动投入的弹性,即在资本投入保持不变的情况下,劳动投入每增加一个百分点,产出(GDP)将平均增加0.806863个百分点,即0.81%,0.729732表示产出对资本投入的弹性,即在劳动投入保持不变的情况下,资本投入每增加一个百分点,产出(GDP)将平均增加0.729732个百分点,即0.73%.,因为LnA=-5.273266,所以A=e-5.273266=0.806863,=0.729732,但如何将回归的模型转化为原始的模式呢?即转化为GDP=ALK 的形式。,2半对数模型 在对经济变量的变动规律研究中,测定其增长率或衰减率是一个重要方面。在回归分析中,我们可以用半对数模型来测度这些增长率。模型形式:,lnY=b0+b1X+u(对数-线性模型)Y=b0+b1lnX+u(线性-对数模型),lnY=b0+b1X+u(对数-线性模型)对数-线性模型特点:b1表示当X每变动1个绝对量单位时(而X变动1个单位,用符号表达就是X),Y将变动一个相对量,这个相对量用 Y/Y表示。然后,将(Y/Y)除以X,即将(Y/Y)除以1,就等于b1。那么(Y/Y)=b1*1=100 b1%也就是说,当X每变动1个单位绝对量时,Y变动的百分比为100b1%。注:b1=(Y/Y)/X,Y=b0+b1lnX+u(线性-对数模型)线性-对数模型特点:b1表示当X每变动1%时(而X变动1%,用符号表达就是X/X),Y将变动一个绝对量,这个绝对量用 Y表示。然后,将Y除以(X/X),即将Y除以1%,就等于b1。那么Y=b1*(X/X)=b1*0.01 也就是说,当X每变动1%时,Y变动的绝对量为b1*0.01。注:b1=Y/(X/X),lnY=b0+b1X+u(对数-线性模型)案例:要求出1970-1999年美国人口增长率,也就是要求出当时间每递增1年时,人口增长的百分比。,建立工作文件,输入原始数据,生成新序列LnUSPOP,Workfile中可见新序列,利用(LnUSPOP c t)进行回归,对数-线性模型回归结果,模型通过整体显著性检验(可决系数和F值都很大),变量也通过显著性检验(t值很大),截距系项也通过显著性检验。,对数-线性模型公式表达:,0.009801表示自变量T每变动一个绝对量单位,即向前推进一年,因变量USPOP(美国人口)将增长100*0.009801%,即0.9801%。,Y=b0+b1lnX+u(线性-对数模型)案例(要求出美国某时间段总消费支出与服务支出的关系,也即要求出当总消费支出增长1%时,服务支出增加的绝对值),建立工作文件,输入原始数据,生成新序列LnX,Workfile中可见到新序列,利用Y C LNX进行回归,回归结果,模型通过整体显著性检验(可决系数和F值都很大),变量也通过显著性检验(t值很大),截距系项也通过显著性检验。,线性-对数模型公式表达:,2431.686表示自变量X(即总消费支出)每增加1%,因变量服务支出(Y)平均而言将增加绝对量0.01*2431.686,即24.31686(单位:10亿)。,3倒数模型,表3-10 1958-1969美国小时工资收入指数年变化的百分比(Y)与失业率(X),要求:根据以上数据建立美国1958-1969年的菲利普斯曲线。采用模型形式:Y=b0+b1(1/x)+u,工作文件建立,原始数据输入,生成新序列X1,以(Y C X1)回归,回归输出结果,回归结果显示,模型整体上通过显著性检验(F值、R2较大),变量也通过显著性检验(t值较大),唯有截距项未通过显著性检验,但为了探讨的需要,还是将截距项保留在模型中。,回归结果的公式表达:,或者:,结果发现:失业率X与货币工资收入变动率(或通货膨胀率)Y之间成此消彼长的关系。,4多项式模型 多项式回归模型在生产与成本函数这个领域中被广泛地使用。多项式回归模型可表示为,为了分析某行业的生产成本情况,从该行业中选取10家企业,表3-12中列出了这些企业总产量X(吨)和总成本Y(万元)的有关资料,试建立该行业的总成本函数。,根据相关理论,总成本函数可以用产量的三次多项式近似表示,即Y=b0+b1X+b2X2+b3X3+u,建立工作文件,输入原始数据,生成新序列X1,生成新序列X2,生成新序列X3,利用新生成的序列进行回归,回归结果的输出,从回归结果可知,模型通过整体显著性检验(F值,可决系数都很大),各变量也都通过显著性检验(t值很大),截距项也通过显著性检验。,回归模型的公式表达:,或者:,

    注意事项

    本文(回归模型的函数形式非线性回归模型的估计.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开