欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    半导体材料电化学.ppt

    • 资源ID:6103170       资源大小:396KB        全文页数:138页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    半导体材料电化学.ppt

    第五章 半导体材料与太阳能电池,5.1 半导体材料概述,半导体材料(semiconductor material)是一类具有半导体性能、可用来制作半导体器件和集成电路的电子材料。半导体材料的导电能力介于导体与绝缘体之间,其电导率在10-8106S/m范围内。金属导体电导率:108106 S/m,绝缘体电导率:10-810-20 S/m.,半导体材料的电学性质对光、热、电、磁等外界因素的变化十分敏感,在半导体材料中掺入少量杂质可以控制这类材料的电导率。正是利用半导体材料的这些性质,才制造出功能多样的半导体器件。半导体材料是半导体工业的基础,它的发展对半导体技术的发展有极大的影响。,元素半导体有锗、硅、硒、硼、碲、锑等。上世纪50年代,锗在半导体中占主导地位,但锗半导体器件的耐高温和抗辐射性能较差,到60年代后期逐渐被硅材料取代。用硅制造的半导体器件,耐高温和抗辐射性能较好,特别适宜制作大功率器件。因此,硅已成为应用最多的一种半导体材料,目前的集成电路大多数是用硅材料制造的。,4.1.1 半导体材料的分类,根据化学成分和内部结构,大致可分为以下几类:,元素半导体(element semiconductor),化合物半导体是由两种或两种以上的元素化合而成的半导体材料。它的种类很多,重要的有砷化镓、磷化铟、锑化铟、碳化硅、硫化镉及镓砷硅等。其中砷化镓是制造微波器件和集成电路的重要材料。碳化硅由于其抗辐射能力强、耐高温和化学稳定性好,在航天技术领域有着广泛的应用。,化合物半导体(compound semiconductor),无定形半导体材料(玻璃体)是一种非晶态无定形半导体材料,分为氧化物玻璃和非氧化物玻璃两种。这类材料具有良好的开关和记忆特性及很强的抗辐射能力,主要用来制造阈值开关、记忆开关和固体显示器件。,无定形半导体材料(amorphous semiconductor material),已知的有机半导体材料有几十种,包括萘、蒽、聚丙烯腈、酞菁和一些芳香族化合物等,目前尚未得到应用。,有机半导体材料(organic semiconductor material),半导体材料的导电性对某些微量杂质极敏感。纯度很高的半导体材料称为本征半导体,常温下其电阻率很高,是电的不良导体。在高纯半导体材料中掺入适当杂质后,由于杂质原子提供导电载流子,使材料的电阻率大为降低。这种掺杂半导体常称为杂质半导体。,4.1.2 半导体材料的特性和参数,半导体材料的特性和参数,杂质半导体靠导带电子导电的称N(Negative)型半导体,靠价带空穴导电的称P(Positive)型半导体。不同类型半导体间接触(构成PN结)或半导体与金属接触时,因电子(或空穴)浓度差而产生扩散,在接触处形成位垒,因而这类接触具有单向导电性。,利用PN结的单向导电性,可以制成具有不同功能的半导体器件,如二极管、三极管、晶闸管等。此外,半导体材料的导电性对外界条件(如热、光、电、磁等因素)的变化非常敏感,据此可以制造各种敏感元件,用于信息转换。,半导体材料的特性参数有禁带宽度、电阻率、载流子迁移率、非平衡载流子寿命和位错密度。禁带宽度由半导体的电子态、原子组态决定,反映组成这种材料的原子中价电子从束缚状态激发到自由状态所需的能量。电阻率、载流子迁移率反映材料的导电能力。,非平衡载流子寿命反映半导体材料在外界作用(如光或电场)下内部载流子由非平衡状态向平衡状态过渡的弛豫特性。位错是晶体中最常见的一类缺陷。位错密度用来衡量半导体单晶材料晶格完整性的程度,对于非晶态半导体材料,则没有这一参数。,半导体材料的特性参数不仅能反映半导体材料与其它非半导体材料之间的差别,更重要的是能反映各种半导体材料之间甚至同一种材料在不同情况下,其特性的量值差别。,电阻效应 1833年,英国巴拉迪最先发现硫化银的电阻随着温度的变化情况不同于一般金属。一般情况下,金属的电阻随温度升高而增加,但巴拉迪发现硫化银材料的电阻是随着温度的上升而降低,这是半导体现象的首次发现,称为电阻效应或电阻特性。,半导体材料的四大效应,光伏效应 1839年,法国的贝克莱尔发现半导体和电解质接触形成的结,在光照下会产生一个电压,这就是后来人们熟知的光生伏特效应,这是被发现的半导体的第二个特征,称为光生伏特效应简称光伏效应。,整流效应 1874年,德国的布劳恩观察到某些硫化物的电导与所加电场的方向有关,即它的导电有方向性,在它两端加一个正向电压,它是导电的;如果把电压极性反过来,它就不导电,这就是半导体的整流效应,也是半导体所特有的第三种特性。,光电导效应 1873年,英国的史密斯发现硒晶体材料在光照下导电,这就是光电导效应,这是半导体又一个特有的性质。,半导体的这四个效应,虽在1880年以前就先后被发现,但半导体这个名词大概到1911年才被考尼白格和维斯首次使用。而总结出半导体的这四个特性一直到1947年12月才由贝尔实验室完成,主要原因是当时的材料不纯。没有好的材料,很多与材料相关的问题就难以说清楚。,半导体的第一个应用就是利用它的整流效应作为检波器,就是点接触二极管(将一个金属探针接触在一块半导体上,以检测电磁波)。除了检波器之外,在早期,半导体还用来做整流器、光伏电池、红外探测器等,半导体的四个效应都用到了。,4.1.2 半导体材料的应用,半导体材料的早期应用,从1907年到1927年,美国的物理学家研制成功晶体整流器、硒整流器和氧化亚铜整流器。1931年,兰治和伯格曼研制成功硒光伏电池。1932年,德国先后研制成功硫化铅、硒化铅和碲化铅等半导体红外探测器,在二战中用于侦探飞机和船舰。二战时盟军在半导体方面的研究也取得了很大成效,英国就利用红外探测器多次侦探到了德国的飞机。,晶体管的发明:晶体管的发明实际上是在1947年的12月23日的半年之前,当时贝尔实验室的研究人员已经看出了晶体管的商业价值,为写专利,保密了半年,到1947年12月23日,巴丁和布尔吞才正式公布了他们的发明,这也成为晶体管的正式发明日。,他们用了一个非常简单的装置,就是在一块锗晶体上,用两个非常细的金属针尖扎在锗的表面,在一个针上加正电压,在另外一个探针上加一个负电压,我们现在分别称为发射极和集电极,N型锗就变成了一个基极,这样就形成了一个有放大作用的PNP晶体管。,1948年1月,即在晶体管发明不久之后,肖克莱提出了一个不是点接触而是面接触式晶体管结构。后来证明这种结构才真正有价值。科学界对这个发明还是给予了很高的评价,1956年,巴丁、布尔吞和肖克莱三人被授予诺贝尔物理学奖。,晶体管的发明不仅引起了电子工业的革命,而是彻底的改变了我们人类的生产、生活方式。我们今天日常所用的电器几乎没有一样不用晶体管,如通信、电脑、电视、航天、航空等等。,单晶硅技术 电子元器件90以上都是由硅材料制备的,全世界与硅相关的电子工业产值接近一万亿美元。直拉法是目前主要用于生产硅单晶的方法。上世纪50到60年代,拉出的硅单晶直径只有两英寸,现在8英寸,12英寸、长达1米多的硅单晶都已实现了规模生产。,半导体材料的发展趋势,目前,单晶硅的世界年产量已超过1万吨。硅集成电路主要用的是8英寸硅,但12英寸硅的用量逐年增加,预计到2012年18英寸的硅可能用于集成电路制造,27英寸的硅晶体研制也正在筹划中。,但随着硅的直径增大,杂质氧等在硅锭和硅片中的分布也变得不均匀,这将严重的影响集成电路的成品率,特别是高集成度电路。为避免氧的沉淀带来的问题,可采用外延的办法解决。即用硅单晶片为衬底,然后在其上通过气相反应方法再生长一层硅,如2个微米,1个微米,或0.5个微米厚等。,这一层外延硅中的氧含量就可以控制得非常低,器件和电路就做在外延硅上,而不是原来的硅单晶上,这样就可解决由氧导致的问题。尽管成本将有所提高,但集成电路的集成度和运算速度都得到了显著提高,这是目前硅技术发展的一个重要方向。,从提高集成电路的成品率、降低成本看,增大硅单晶的直径是发展的大趋势,向12英寸,18英寸方向发展;另一方面,从提高硅集成电路的速度和它的集成度看,发展适用于深亚微米乃至纳米电路的硅外延技术,制备高质量硅外延材料是关键。,硅单晶中氧的沉淀将产生微缺陷,目前集成电路的线条宽度已达到0.1微米以下,如果缺陷的直径大小为1个微米或者是0.5个微米,一个电路片上有一个缺陷就会导致整个片子失效,这对集成电路的成品率将带来严重影响。制备硅单晶的原材料是多晶硅,我国多晶硅产量2005年仅有60吨,2006年也只有287吨,2007年为1156吨,2008年已超过3000吨,2009年达近万吨。,从集成电路的线宽来看,我国目前集成电路工艺技术水平在0.350.25微米,而国际上目前的生产技术已达到微米,在实验室70纳米的技术也已经通过鉴定。前几年在北京建成投产的(中芯国际)集成电路技术已进入0.13微米,并即将升级到0.09微米,因而我国的微电子集成电路技术同国外的差距也大大缩短。,硅微电子技术 目前硅的集成电路大规模生产技术已经达到0.130.09微米,进一步将到0.07微米,也就是70个纳米甚至更小。根据预测,到2022年,硅集成电路技术的线宽可能达到10个纳米,这个尺度被认为是硅集成电路的“物理极限”,总有一天硅微电子技术会走到尽头。,随着集成电路线宽的进一步减小,硅微电子技术必然要遇到许多难以克服的问题,比如说长度为100个纳米的源和漏电极之间,掺杂原子也只有100个左右,如何保证这100个原子在成千上万个器件里的分布保持一致,显然是非常困难的。,也就是说杂质原子分布不均匀,将导致器件性能不一,性质的不一致,就难保证电路的正常工作。又如MOS器件的栅极下面的绝缘层就是二氧化硅,它的厚度随着器件尺寸的变小而变小,当沟道长度达到0.1个微米时,SiO2的厚度大概也在一个纳米左右。尽管上面加的栅电压很低,如一个纳米上加0.5伏或者是1伏电压,但是加在其上的电场强度就要达到每厘米5-10兆伏以上,超过了材料的击穿电压。当这个厚度非常薄的时候,很容易发生击穿,导致器件无法正常工作。,随着集成电路集成度的提高,芯片的功耗也急剧增加,使其难以承受;现在电脑CPU的功耗已经很高,如果说将来把它变成“纳米结构”,即不采用新原理,进一步提高集成度,那么加在它上面的功耗就有可能把硅熔化掉。另外一个问题是光刻技术,目前大约可以做到0.1微米,虽然还有些正在发展的光刻技术,如X光、超紫外光刻技术等,但要满足纳米加工技术的需求,还相差很远。,再者,就是电路器件之间的互连问题,对每一个芯片来说,每一个平方厘米上有上千万、上亿只管子,管子与管子之间的联线的长度要占到器件面积的6070,现在的连线就多达8层到10多层,尽管两个管子之间的距离可以做得很小,但是从这个管子到另外一个管子,电子走的路径不是直线,而要通过很长的连线。我们知道线宽越窄,截面越小,电阻越大,加上分布电容,电子通过引线所需的时间就很长,这就使CPU的速度变慢。,另外纳米加工的制作成本也很高,由于这些原因,硅基微电子技术最终将没有办法满足人类对信息量不断增长的需求。,人们要想突破上述的“物理极限”,就必须要探索新原理、开发新技术,如量子计算、光计算机等,它们的工作原理是与现在的完全不同,尚处于初始的探索阶段。在目前这个过渡期间,人们把希望放在发展新型半导体材料和开发新技术上,比如说GaAs、InP和GaN基材料体系,采用这些材料,可以提高器件和电路的速度以及解决由于集成度的提高带来的功耗增加出现的问题。,GaAs和InP单晶材料 化合物半导体材料,以砷化镓(GaAs)为例,有以下几个特点:一是发光效率比较高,二是电子迁移率高,同时可在较高温度和在其它恶劣的环境下工作,特别适合于制作超高速、超高频、低噪音的电路,它的另一个优势是可以实现光电集成,即把微电子和光电子结合起来,光电集成可大大的提高电路的功能和运算的速度。,氮化镓、碳化硅和氧化锌等都是宽带隙半导体材料,因为它的禁带宽度都在3个电子伏以上,在室温下不可能将价带电子激发到导带。器件的工作温度可以很高,比如说碳化硅可以工作到600摄氏度;金刚石如果做成半导体,温度可以更高,器件可用在石油钻探头上收集相关需要的信息。它们还在航空、航天等恶劣环境中有重要应用。,宽带隙半导体材料,用碳化硅的高功率发射器件,体积至少可以减少几十到上百倍,寿命也会大大增加,所以高温宽带隙半导体材料是非常重要的新型半导体材料。,现在的问题是这种材料非常难生长,硅上长硅,砷化镓上长GaAs,它可以长得很好。但是这种材料大多都没有块体材料,只得用其它材料做衬底去长。比如说氮化镓在蓝宝石衬底上生长,蓝宝石跟氮化镓的热膨胀系数和晶格常数相差很大,长出来的外延层的缺陷很多,这是最大的问题和难关。另外这种材料的加工、刻蚀也都比较困难。如果这个问题一旦解决,就可以为我们提供一个非常广阔的发现新材料的空间。,从本质上看,发展纳米科学技术的重要目的之一,就是人们能在原子、分子或者纳米的尺度水平上来控制和制造功能强大、性能优越的纳米电子、光电子器件和电路,纳米生物传感器件等。,纳米半导体材料,不同的半导体器件对半导体材料有不同的形态要求,包括单晶的切片、磨片、抛光片、薄膜等。半导体材料的不同形态要求对应不同的加工工艺。常用的半导体材料制备工艺有提纯、单晶的制备和薄膜外延生长。所有的半导体材料都需要对原料进行提纯,要求的纯度在6个“9”以上,最高达11个“9”以上。,半导体材料的制备,提纯的方法分两大类:物理提纯 不改变材料的化学组成进行提纯,称为物理提纯;物理提纯的方法有真空蒸发、区域精制、拉晶提纯等,使用最多的是区域精制。化学提纯 把元素先变成化合物进行提纯,再将提纯后的化合物还原成元素,称为化学提纯。化学提纯的主要方法有电解、络合、萃取等。,由于每一种方法都有一定的局限性,因此常使用几种提纯方法相结合的工艺流程,以获得合格的材料。,绝大多数半导体器件是在单晶片或以单晶片为衬底的外延片上作出的。成批量的半导体单晶都是用熔体生长法制成的。直拉法应用最广,80的硅单晶、大部分锗单晶和锑化铟单晶是用此法生产的。在熔体中通入磁场的直拉法称为磁控拉晶法,用此法已生产出高均匀性硅单晶。,在坩埚熔体表面加入液体覆盖剂称液封直拉法,用此法拉制砷化镓、磷化镓、磷化铟等分解压较大的单晶。悬浮区熔法的熔体不与容器接触,用此法生长高纯硅单晶。水平区熔法用以生产锗单晶。水平定向结晶法主要用于制备砷化镓单晶,而垂直定向结晶法用于制备碲化镉、砷化镓。用各种方法生产的体单晶再经过晶体定向、滚磨、作参考面、切片、磨片、倒角、抛光、腐蚀、清洗、检测、封装等全部或部分工序以提供相应的晶片。,在单晶衬底上生长单晶薄膜称为外延。外延的方法有气相、液相、固相、分子束外延等。工业生产使用的主要是化学气相外延,其次是液相外延。金属有机化合物气相外延和分子束外延则用于制备量子阱及超晶格等微结构。非晶、微晶、多晶薄膜多在玻璃、陶瓷、金属等衬底上用不同类型的化学气相沉积、磁控溅射等方法制成。,多晶硅半导体材料是新能源产业及信息产业的基础原材料,此前,只有美国、日本、德国拥有先进的产业化技术,长期实行技术封锁和市场垄断。近年来,我国多晶硅材料产业也实现了快速发展。在严峻的能源形势和生态环境压力下,在技术进步和法规政策的强力推动下,世界光伏产业自本世纪开始,进入快速发展时期。,4.2 硅半导体材料与太阳能电池,4.2.1 多晶硅半导体材料,最近10年,太阳能电池的年平均增长率为41.3%,最近5年,年平均增长率为49.5%。受国际光伏发电产业快速发展的影响,我国太阳能电池的产量近几年持续保持高速增长,2007年中国太阳电池产量达到1088MW,占世界总产量的27.2%,一跃成为世界第一大生产国。2010年太阳能电池产量达到2500MW,需要太阳能级高纯硅材料约2.5万吨。,根据信息产业发展“十一五”规划提出的目标,到2010年,半导体级高纯硅材料需求总量约为2500吨,2010年多晶硅总需求量达到近3万吨。而我国多晶硅产量2006年仅287吨,2007年也只有1156吨,2008年超过3000吨,2009年达到近万吨。,太阳能是人类取之不尽用之不竭的可再生能源。也是清洁能源,不产生任何的环境污染。在太阳能的有效利用当中;大阳能光电利用是近些年来发展最快,最具活力的研究领域。制作太阳能电池主要是以半导体材料为基础,其工作原理是利用光电材料吸收光能后发生光电转换反应。根据所用材料的不同,太阳能电池可分为:硅基太阳能电池和薄膜电池,这里主要讲的硅基太阳能电池。,4.2.2 硅基太阳能电池,硅太阳能电池工作原理与结构 太阳能电池的工作原理主要是半导体的光电效应,硅半导体的结构如下图所示:,图中,正电荷表示硅原子,负电荷表示围绕在硅原子旁边的四个电子。,当硅晶体中掺入其他的杂质,如硼、磷等,当掺入硼时,硅晶体中就会存在着一个空穴,它的形成可以参照下图:,图中,正电荷表示硅原子,负电荷表示围绕在硅原子旁边的四个电子。而黄色的表示掺入的硼原子,因为硼原子周围只有3个电子,所以就会产生如图所示的蓝色的空穴,这个空穴因为没有电子而变得很不稳定,容易吸收电子,形成P(positive)型半导体。,硅原子,硼原子,空穴,同样,掺入磷原子以后,因为磷原子有五个电子,所以就会有一个电子变得非常活跃,形成N(negative)型半导体。黄色的为磷原子核,红色的为多余的电子。如下图。,磷原子核,P型半导体中含有较多的空穴,而N型半导体中含有较多的电子,这样,当P型和N型半导体结合在一起时,就会在接触面形成电势差,这就是PN结。,当P型半导体和N型半导体结合在一起时,在两种半导体的交界面区域里会形成一个特殊的薄层,界面的P型一侧带负电,N型一侧带正电。这是由于P型半导体多空穴,N型半导体多自由电子,出现了浓度差。N区的电子会扩散到P区,P区的空穴会扩散到N区,一旦扩散就形成了一个由N指向P的“内电场”,从而阻止扩散进行。达到平衡后,就形成了这样一个特殊的薄层,形成电势差,这就是PN结。,当晶片受光照后,PN结中,N型半导体的空穴往P型区移动,而P型区中的电子往N型区移动,从而形成从N型区到P型区的电流。然后在PN结中形成电势差,这就形成了电源。(如下图所示),N型半导体,P型半导体,由于半导体不是电的良导体,电子在通过P-N结后如果在半导体中流动,电阻非常大,损耗也就非常大。但如果在上层全部涂上金属,阳光就不能通过,电流就不能产生,因此一般用金属网格覆盖P-N结(如图 梳状电极),以增加入射光的面积。,另外硅表面非常光亮,会反射掉大量的太阳光,不能被电池利用。为此给它涂上了一层反射系数非常小的保护膜(如图),实际工业生产基本都是用化学气相沉积沉积一层氮化硅膜,厚度在1000埃左右。将反射损失减小到5甚至更小。一个电池所能提供的电流和电压毕竟有限,于是人们又将很多电池(通常是36个)并联或串联起来使用,形成太阳能光电板。,储能电池,通常的晶体硅太阳能电池是在厚度350450m的高质量硅片上制成的,这种硅片从提拉或浇铸的硅锭上锯割而成。,(2)硅太阳能电池的生产流程,上述方法实际消耗的硅材料比较多。为了节省材料,目前制备多晶硅薄膜电池多采用化学气相沉积法,包括低压化学气相沉积(Low Pressure Chemical Vapor Deposition 简称LPCVD)和等离子增强化学气相沉积(Plasma Enhanced Chemical Vapor Deposition 简称PECVD)工艺。此外,液相外延法(LPPE)和溅射沉积法也可用来制备多晶硅薄膜电池。,化学气相沉积主要是以SiH2Cl2、SiHCl3、SiCl4或SiH4,为反应气体,在一定的保护气氛下反应生成硅原子并沉积在加热的衬底上,衬底材料一般选用Si、SiO2、Si3N4等。但研究发现,在非硅衬底上很难形成较大的晶粒,并且容易在晶粒间形成空隙。,解决这一问题办法是先用 LPCVD在衬底上沉积一层较薄的非晶硅层,再将这层非晶硅层退火,得到较大的晶粒,然后再在这层籽晶上沉积厚的多晶硅薄膜。因此,再结晶技术无疑是很重要的一个环节,目前采用的技术主要有固相结晶法和中区熔再结晶法。多晶硅薄膜电池除采用了再结晶工艺外,另外采用了几乎所有制备单晶硅太阳能电池的技术,这样制得的太阳能电池转换效率明显提高。,生产流程:1.电池检测2.正面焊接检验3.背面串接检验4.敷设(玻璃清洗、材料切割、玻璃预处理、敷设)5.层压6.去毛边(去边、清洗)7.装边框(涂胶、装角键、冲孔、装框、擦洗余胶)8.焊接接线盒9.高压测试10.组件测试外观检验11.包装入库。,电池测试:由于电池片制作条件的随机性,生产出来的电池性能不尽相同,所以为了有效的将性能一致或相近的电池组合在一起,所以应根据其性能参数进行分类;电池测试即通过测试电池的输出参数(电流和电压)的大小对其进行分类。以提高电池的利用率,做出质量合格的电池组件。,电池组装工艺简介:,正面焊接:是将汇流带焊接到电池正面(负极)的主栅线上,汇流带为镀锡的铜带,使用的焊接机可以将焊带以多点的形式点焊在主栅线上。焊接用的热源为一个红外灯(利用红外线的热效应)。焊带的长度约为电池边长的2倍。多出的焊带在背面焊接时与后面的电池片的背面电极相连。,背面串接:背面焊接是将36片电池串接在一起形成一个组件串,目前采用的工艺是手动的,电池的定位主要靠一个膜具板,上面有36个放置电池片的凹槽,槽的大小和电池的大小相对应,槽的位置已经设计好,不同规格的组件使用不同的模板,操作者使用电烙铁和焊锡丝将的正面电极(负极)焊接到的背面电极(正极)上,这样依次将36片串接在一起并在组件串的正负极焊接出引线。,层压敷设:背面串接好且经过检验合格后,将组件串、玻璃和切割好的EVA(乙烯-醋酸乙烯共聚物)、玻璃纤维、背板按照一定的层次敷设好,准备层压。玻璃事先涂一层试剂(primer)以增加玻璃和EVA的粘接强度。敷设时保证电池串与玻璃等材料的相对位置,调整好电池间的距离,为层压打好基础。(敷设层次由下向上:玻璃、EVA、电池、EVA、玻璃纤维、背板)。,组件层压:将敷设好的电池放入层压机内,通过抽真空将组件内的空气抽出,然后加热使EVA熔化将电池、玻璃和背板粘接在一起;最后冷却取出组件。层压工艺是组件生产的关键一步,层压温度和层压时间根据EVA的性质决定。使用快速固化EVA时,层压循环时间约为25分钟,固化温度为150。,修边:层压时EVA熔化后由于压力而向外延伸固化形成毛边,所以层压完毕应将其切除。,装框:类似于给玻璃装一个镜框;给玻璃组件装铝框,增加组件的强度,进一步的密封电池组件,延长电池的使用寿命。边框和玻璃组件的缝隙用硅酮树脂填充。各边框间用角键连接。,焊接接线盒:在组件背面引线处焊接一个盒子,以利于电池与其他设备或电池间的连接。,高压测试:高压测试是指在组件边框和电极引线间施加一定的电压,测试组件的耐压性和绝缘强度,以保证组件在恶劣的自然条件(雷击等)下不被损坏。,组件测试:测试的目的是对电池的输出功率进行标定,测试其输出特性,确定组件的质量等级。,当煤炭、石油等不可再生能源频频告急,能源问题日益成为制约国际社会经济发展的瓶颈时,越来越多的国家开始实行“阳光计划”,开发太阳能资源,寻求经济发展的新动力。欧洲一些高水平的核研究机构也开始转向可再生能源。在国际光伏市场巨大潜力的推动下,各国的太阳能电池制造业争相投入巨资,扩大生产,以争一席之地。,4.2.3 太阳能电池发展市场,全球太阳能电池产业1994-2004年10年里增长了17倍,太阳能电池生产主要分布在日本、欧洲和美国。2006年全球太阳能电池安装规模已达1744MW,较2005年成长19,整个市场产值已突破100亿美元大关。2007年全球太阳能电池产量达到3436MW,比2006年增长了56%。,中国对太阳能电池的研究起步于1958年,20世纪80年代末期,国内先后引进了多条太阳能电池生产线,使中国太阳能电池生产能力由原来的几百kW一下子提升到4.5MW。2002年后,欧洲市场特别是德国市场的急剧放大,再加上无锡尚德太阳能电力有限公司的产生及超常规发展,给中国光伏产业带来了前所未有的发展机遇和示范效应。,目前,我国已成为全球主要的太阳能电池生产国。2007年全国太阳能电池产量达到1188MW,同比增长293%。中国已经成功超越欧洲、日本成为世界太阳能电池生产第一大国。在产业布局上,我国太阳能电池产业已经形成了一定的集聚态势。在长三角、环渤海、珠三角、中西部地区,已经形成了各具特色的太阳能产业集群。,中国的太阳能电池研究比国外晚了20年,尽管最近10年国家在这方面逐年加大了投入,但投入仍然不够,与国外差距还是很大。需要尽快解决太阳能发电上网与合理定价等问题。同时可借鉴国外的成功经验,在公共设施、政府办公楼等领域强制推广使用太阳能,充分发挥政府的示范作用,推动国内市场尽快起步和良性发展。,太阳能光伏发电在不远的将来会占据世界能源消费的重要席位,不但要替代部分常规能源,而且将成为世界能源供应的主体。,据有关部门预测,到2030年,可再生能源在总能源结构中将占到30以上,而太阳能光伏发电在世界总电力供应中的占比也将达到10以上;到2040年,可再生能源将占总能耗的50以上,太阳能光伏发电将占总电力的20以上;到21世纪末,可再生能源在能源结构中将占到80以上,太阳能发电将占到60以上。这些数字足以显示出太阳能光伏产业的发展前景及其在能源领域重要的战略地位。,利用和转换太阳能是解决世界范围内的能源危机和环境问题的一条重要途径。世界上第一个认识到光电化学转换太阳能为电能可能实现的是Becquerel,他在1839年发现涂布了卤化银颗粒的金属电极在电解液中产生了光电流,以后Brattain、Garrett及Gerisher等人先后提出和建立了一系列有关光电化学能量转换的基本概念和理论,开辟了光电化学研究的新领域。,4.3 太阳能光电化学转换,4.3.1 概述,1972年Honda和Fujishima应用N-TiO2电极成功地进行太阳能光分解水制氢,使人们认识到光电化学转换太阳能为电能和化学能的应用前景。从此,以利用太阳能为背景的光电化学转换成为一个非常活跃的科学研究前沿。,光电化学太阳电池的一个突出的特点是材料制备工艺简单,即使应用多晶半导体也可期望获得有较高的能量转换效率,可大大降低成本,增加大规模应用的可能性,因此光电能量的直接转换成为最引人注目的一个重要研究方面。,我国自1978年进行光电化学能量转换方面的研究,其进展情况可大致分为三个阶段:七十年代后期,为寻找廉价光电化学转换太阳能的方法和途径广泛地进行了各种半导体电极电解液体系的光电化学转换研究;八十年代中期,随着人工化学模拟光合作用研究的深入,有机光敏染料体系的光电能量转换很快兴起并得到很大发展;九十年代以来,由于新材料的诞生和迅速发展,新型纳米结构半导体和有机纳米半导体复合材料成为光电化学能量转换研究的主要对象和内容。,用于光电化学太阳能电池中半导体电极研究的材料包括有:Si、B-A族化合物CdX(X=S、Se、Te)、A-A族化合物(GaAs、InP)、二硫族层状化合物(MoS2、FeS2)、三元化合物(CuInSe2、CuInS2、AgInSe2)及氧化物半导体(TiO2、ZnO、Fe2O3)等。,4.3.2 常规和非常规半导体电极的光电化学太阳能电池,其中窄禁带半导体(Eg2.0eV)可获得较高的光电转换效率,但存在光腐蚀现象,宽禁带半导体(Eg3.0eV)具有良好的稳定性,但对太阳能的吸收率低。因此大量的研究工作都是围绕提高光电效率和稳定性进行的。,同固体太阳能电池一样,Si在光电化学电池研究中也是一个重点对象。Si是较理想的光电极材料,但在电解质水溶液中容易光腐蚀,其表面生成SiOX绝缘层使光电流急骤衰减。因此,克服光腐蚀是Si光电化学电池研究的主要内容。在N-Si电极表面化学沉积Au,形成Au与Si表面渗合层,可减少光腐蚀;用电沉积法将聚丁基紫精修饰于P-Si电极表面,也使光腐蚀明显下降。N型和P型外延硅电极由于电荷分离效率高,其光电流较大。,通过表面修饰几个纳米厚的金属层(Pt、Ni、Au、Cu、Co),进一步提高光稳定性,可以获得光电性能优越的光电化学电池。其中以真空蒸镀或溅射方法在外延硅表面修饰Pt或Ni以及PtNi(NiPt)复合层的效果较好,不仅提高了光稳定性能,而且在一定电压下光电流增大了10倍。,用同样的方法覆盖-Fe2O3和ZnO薄膜也得到了类似的结果。用LB膜技术在N-Si电极表面修饰排列有序的Pt团簇(平均直径为4nm),其开路电压达到了0.685V。金属和金属氧化膜的表面修饰加速了光生空穴的界面转移,从而有效抑制了电极自身光腐蚀,同时也提高了光电性能。,注:LB膜技术是一种能够精确控制薄膜厚度和分子排列的单分子沉积技术。,-族化合物半导体CdX(X=S、Se、Te)是光电化学研究较为普遍的光电极材料,其主要优点是可用多种方法如粉末压片法、涂敷法、真空沉积、化学气相沉积、电沉积、化学溶液沉积以及喷涂热解法等制备,得到转换效率较高的多晶或薄膜光电极,这些方法价格低廉、简单易行,多数还可适用于大面积制备。,在CdX(X=S、Se、Te)化合物中CdS的能隙较大(Eg=2.4eV),只能吸收小于517nm波长的太阳光,曾用压片烧结、涂敷、喷涂热分解制备各种CdS电极并用RuS2进行光谱敏化,将吸收截止波长由517nm延长至890nm,但转换效率都很低,因此研究的重点是CdSe和CdTe电极。,用涂敷法在各种金属基底(钛、铬、钼、铂)、非金属基底(二氧化锡、石墨、破碳)上都可成功制备性能稳定、重现性好的CdSe薄膜电极。在金属基底CdSe薄膜结合力强,界面电阻小,经过电极表面的化学刻蚀和光化学刻蚀获得了7的能量转换效率。,进一步控制热处理气氛中的含氧量使转换效率提高至8.3。制备中用Te替代部份Se形成CdSe和CdSexTe1-x薄膜电极,其光谱响应范围与X值大小有关,当调X=0.63时能量转换效率达到12.3。CdTe具有吸收太阳光能的最佳能隙(Eg=1.4eV),其单晶电极在多硫溶液中达到15.6的光电转换效率,但用电沉积法制备多晶薄膜电极却只获得3.6的转换效率。,通过对CdX(X=S、Se、Te)光电极性能比较,CdSe和CdSexTe1-x薄膜的光电性能和稳定性能优于CdS和CdTe电极,是光电化学研究中有发展前途的光电极材料。,在CdS和CdTe薄膜的研究中证明了表面修饰也是改善光电性能的有效措施,研究Au、Pt、Ru和Pd等贵金属修饰CdS和CdTe电极,发现贵金属在电极表面的构型不同会产生不同效果,大量的Pt覆盖电极表面降低了电极界面光电化学反应的极化,增大了反应的交换电流,是电极界面光电催化的最佳构型。Pd的修饰形成了金属致密层,结果使光电性能下降,产生与Pt修饰相反的效果。,用LB膜技术实现分子取向、排列结构和浓度可控的条件下研究具有不同氧化还原电位和传递电荷性质的二茂铁衍生物修饰CdSe薄膜电极,将电极表面的微观分子设计与宏观电极过程联系起来,为修饰分子的优化提供大量信息,使半导体电极表面修饰技术有很大的提高和发展。,对族化合物半导体主要研究GaAs和InP单晶电极,它们具有吸收太阳光能的最佳带隙,可以构成高效的光电化学电池。N-GaAs电极在多硒溶液中有较好的稳定性,经H2SO4-H2O2混合溶液的反复刻蚀,再吸附Ru3+离子后有效降低表面复合,使光电转换效率大大提高,接近于20。N-InP电极的晶面取向和掺杂浓度对光电性能有很大影响,掺杂浓度低的光电流、光电压优于掺杂浓度高的电极;在Fe2+/Fe3+酸性溶液中,性能稳定,转换效率达到18,P-InP电极在V2V3溶液中表面经Ag修饰和电镀Cu改善背面接触后效率达到18.8。,过渡金属二硫族层状化合物具有特殊的电子结构,其过渡金属存在分离的d轨道,受激电子在d-d轨道间跃迁,最大跃迁能为,而且不影响化学键,因此其光稳定性好。研究天然晶体MoS2电极发现,其光电性能存在各向异性的特征,电极的表面性质是决定光电性能的关键因素,通过离子特性吸附和表面活性剂处理都能明显提高光电流和光电压,FeS2电极则可通过界面配位化学途径来改善其光电性能。,在三元半导体化合物中有人研究了CuInS2和CuInSe2及其固溶体的烧结多晶电极,通过固溶体的组成变化来改变电极的能隙及电子亲合势,得到CuInS2(1.51eV)、CuInS1.5Se0.5(1.44eV)、CuInSSe(1.24eV),CuInS0.5Se1.5(1.13eV)和CuInSe2(1.04eV)不同组成的三元化合物多晶电极,在多硫溶液中以CuInS2电极的光电流、光电压最大,转换效率达到1.8,而且间断运行一年光电性能未见衰减。AgInSe2电极在多碘溶液中的光电化学性能优于CuInSe2。,氧化物半导体一般具有很好的光稳定性能,但存在的问题是能量转换效率较低,因此研究的重点是通过光谱敏化、离子掺杂和光电催化作用来改善其光电性能。最有代表性的是TiO2,热氧化制备的多晶薄膜电极在通氮无氧的K4Fe(CN)6和HClO4混合溶液中浸渍,由于K4Fe(CN)6与TiO2表面中的Ti4形成电荷转移配合物,使TiO2的吸收光谱由400nm扩展到600nm以上。,另外,有人还研究了铱和钴对TiO2电极光电化学反应的催化作用,铱以大量微孔的透光层形式,钴则以高度分散固定在TiO2电极表面,都能快速捕获光生空穴催化界面光反应氧化,将钴微粒载在多孔铱层产生了更大的光电流,说明铱和钴的联合作用比单一催化剂有更好效果,ZnO电极只能吸收紫外光,用染料罗丹明进行光谱敏化,明显增加了可见光波长区(400nm700nm)的光电流。,-Fe2O3薄膜电极用二茂铁化学真空沉积(VCD法)在高纯Ti层上制备,其工作光谱扩展至670nm,比-Fe2O3能隙相对应的550nm上移了120nm,这是归因于在热处理过程中Ti由基底扩散而导致的掺杂效应。,自然界绿色植物的光合作用是已知的最为有效的太阳光能转换体系。许多人利用类似叶绿素分子结构的有机光敏染料设计人工模拟光合作用的光能转换体系,进行光电转换的研究。由于有机光敏染料可以自行设计合成,与无机半导体材料相比,材料选择余地大,而且易达到价廉的目标。如金属卟啉和金属酞菁是大共轭有机分子与金属组成的配合物,具有较高的化学稳定性,能较强吸收可见光谱,作为有机光伏材料,它是目前广泛研究的对象。,4.3.2 有机光敏染料的光电能量转换,用真空沉积、旋转涂布和电化学沉积等方法,将有机染料修饰在金属、导电玻璃或半导体表面上,在电解液中研究其光电性能。在不同金属卟啉化合物中以Zn、Mg为中心金属的光电性能最佳。不同功能取代基如羟基、硝基、胺基、羧基、甲基等对光电性能有明显的影响,说明可以通过改变功能取代基的种类和位置来优化其光电性能。,5.3.2.1 单层有机光敏染料电极,金属酞菁化合物的光电性能也与中心金属密切相关,三价、四价酞菁化合物(AlClPc,GaClPc,InClPc,SiCl2Pc,GeCl2,TiOPc,VOPc)比二价金属酞菁化合物(ZnPc,MgPc,CoPc,SnPc,PbPc,FePc,NiPc)的光电性能优越,这是因为三价、四价金属酞菁的光谱响应较宽,而且分子中的氯原子和氧原子有利于电子传递。,酞菁铜的电化学聚合膜由于聚合物分子比单体具有更大的共轭体系,电子更易于移动和迁移,而且电聚膜与垫底接触电阻小,因此表现出比其单体更佳的光电性能。除有机光敏染料外,影响光电性能的还有电解液的酸碱性和氧化还原性质以及环境中的氧化性和还原性气氛等。,金属卟啉的最大吸收在410nm左右,大于410nm波长的光吸收较弱,金属酞菁则在600700nm波长有较强的光吸收,将不同光谱响应的二种有机染料如四吡啶卟啉或四甲苯基卟啉与酞菁锌或酞菁铝组合形成双层结构电极,扩展了吸收太阳光谱响应范围,产生明显的光电性能加合效应。,5.3.2.2 双层有机光敏染料电极,具有不同半导体性质的有机光敏染料可以构成双层有机P/N结电极,即有机固态异质

    注意事项

    本文(半导体材料电化学.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开