《原子物理学》(褚圣麟)第一章原子的基本状况.ppt
课程说明,原子物理学是物理学专业的一门重要基础课程。它上承经典物理,下接量子力学,属于近代物理的范畴。在内容体系的描述上,原子物理学采用了普通物理的描述风格,讲述量子物理的基本概念和物理图象,以及支配物质运动和变化的基本相互作用,并在此基础上,利用量子力学的思想和结论,讨论物质结构在原子、原子核以及基本粒子等结构层次的性质、特点和运动规律。,原子物理课程分为三个层次:第一是成熟、已有定论的基本内容,要求学生掌握并能运用;第二是目前已取得最新研究成果,要求学生掌握其物理概念和物理图象;第三对于前沿研究课题内容,要求学生了解其研究方向。在内容上,它由原子物理和原子核两部分组成。主要讲授:绪论、原子的基本状况、原子的能级和辐射、量子力学初步、碱金属原子、多电子原子、磁场中的原子、原子的壳层结构、X射线、原子核等九章内容。,通过原子物理学课的学习,不仅要掌握原子世界的基本规律,培养良好的自学能力和科研素质,还要学习物理学家们那种创造性研究问题的思想和方法,借以培养自己的创新能力。,原子物理学的研究对象是电子、原子核、基本粒子。课程内容抽象枯燥。为了帮助学生建立清晰的物理图像,树立鲜明的物理思想,在讲授中我们充分发挥多媒体技术的优势,再现原子物理学重大发现的物理过程,避开量子力学复杂的数学计算,着重阐述基本概念和基本规律,建立具体的物理模型,引导学生主动把握所研究的对象,学会物理学的研究方法和研究思想,养成良好的自学习惯。,原子物理的研究对象、内容、研究方法,研究对象 原子物理学属近代物理学课程,它是研究物质在原子层次内由什么组成,它们如何作用,发生什么样的运动形态的理论。即主要研究原子结构与性质及有关问题。它是关于物质微观结构的一门科学。研究内容 由原子物理和原子核两部分组成。原子物理部分从原子光谱入手,研究价电子的运动规律;从元素周期律和X射线入手研究内层电子的运动规律和排布。原子核部分主要研究核的整体性质、核力、核模型、核衰变、核反应、核能的开发和利用、以及基本粒子的一些知识。,研究方法:从光谱及实验资料入手,提出假设,建立模型,然后再进行实验验证,最后形成理论。正如恩格斯所说:“只要自然科学在思维着,它的发展形式就是假说。”原子物理学的发展历史 1.古代的原子论:中国古代的原子论(墨子-“端”)古希腊的原子论(德漠克利特)2.近代原子说(道尔顿)3.19世纪末20世纪初的原子说(卢瑟福、玻尔)4.量子力学和现代原子物理学(薛定谔、狄拉克),原子物理学的地位、作用和研究前景 1.原子物理学在材料科学中的应用 2.原子物理学在宇观研究领域中应用:星际分子、宇宙起源等 3.原子物理学在激光技术及光电子研究领域的应用 4.原子物理学在生命科学领域中的应用 5.原子物理学化学研究领域的应用 学习原子物理学应注意的问题 1.实践是检验真理的标准 2.科学是逐步地不断地发展的 3.对微观体系不能要求都按宏观规律来描述 4.要善于观察、善于学习、善于动脑、开拓进取,不断创新,第一章 原子的基本状况,内容:1、汤姆逊原子结构模型,2、原子的核式结构,3、卢瑟福散射理论,4、原子的组成和大小,5、卢瑟福核式结构的意义和困难,重点:原子的核式结构、卢瑟福散射理论,1.1 背景知识,1、原子“原子”一词来自希腊文,意思是“不可分割的”。在公元前4世纪,古希腊哲学家德漠克利特(Democritus)提出这一概念,并把它看作物质的最小单元。在十九世纪,人们在大量的实验中认识了一些定律,如:定比定律:元素按一定的物质比相互化合。倍比定律:若两种元素能生成几种化合物,则在这些化合物中,与一定质量的甲元素化合的乙元素的质量,互成简单整数比。在此基础上,1893年道尔顿(J.Dalton)提出了他的原子学说,他认为1.一定质量的某种元素,由极大数目的该元素的原子所构成;2.每种元素的原子,都具有相同的质量,不同元素的原子,质量也不相同;3.两种可以化合的元素,它们的原子可能按几种不同的比率化合成几种化合物的分子。,根据道尔顿的原子学说,可以对简单的无机化学中的化合物的生成给予定量的解释,反过来,许多实验也证实了原子学说;并且人们发现气态物质参与的化学反应时的元素的重量与体积也遵循上述规律。盖吕萨克定律告诉我们,同温同压下,在每一种生成或分解的气体中,组分和化合物气体的体积彼此之间具有简单的整数比,与前述规律进行对比,我们可以得到这样的结论:气体的体积与其中所含的粒子数目有关。阿伏伽德罗定律告诉我们,同温同压下,相同体积的不同气体含有相等数目的分子。当原子学说逐渐被人们接受以后,人们又面临着新的问题:原子有多大?原子的内部有什么?原子是最小的粒子吗?.,假设某固体元素的原子是球状的,半径为r米,原子之间是紧密地堆积在一起的。该元素的原子量为A,那么1mol该原子的质量为A,若这种原子的质量密度为,原子的大小,A克原子的总体积为,,依此可以算出不同原子的半径,如下表所示:,原子大小的线度在10-10m=1=0.1nm数量级。,一个原子的体积为,,,即,所以原子的半径,,1811年,阿伏伽德罗(A.Avogadno)定律问世,提出1mol任何原子的数目都是 个。,1874年,斯迪尼()综合上述两个定律,指出原子所带电荷为一个电荷的整数倍,并用“电子”来命名这个电荷的最小单位。但实际上确认电子的存在,却是20多年后汤姆逊()的工作;1897年,汤姆逊()发现电子:通过阴极射线管中电子荷质比的测量,汤姆逊()预言了电子的存在。,2、电子,电子的发现并不是偶然的,在此之前已有丰富的积累。,1833年,法拉第(M.Faraday)提出电解定律,1mol任何原子的单价离子永远带有相同的电量-即法拉第常数,,1897年,J.J汤姆逊通过阴极射线管的实验发现了电子,并进一步测出了电子的荷质比:e/m汤姆逊被誉为:“一位最先打开通向基本粒子物理学大门的伟人.”,汤姆逊正在进行实验,阴极射线实验装置示意图,阴极射线:抽去密封玻璃管里的空气,装上两个金属电极,外加高电压就会产生低压放电,即气体导电现象,放电管对着阴极管壁上发生的辐射。,阴极射线实验装置示意图,微粒的荷质比为氢离子荷质比的千倍以上阴极射线质量只有氢原子质量的千分之一还不到 电子,加电场E后,射线偏转,阴极射线带负电。,。,再加磁场H后,射线不偏转,,去掉电场E后,射线成一圆形轨迹,,求出荷质比。,电子电荷的精确测定是在1910年由R.A.密立根(Millikan)作出的,即著名的“油滴实验”。,e=1.6021773310-19C,m=9.109389710-31kg。,质量最轻的氢原子:1.67310-27kg原子质量的数量级:10-27kg10-25kg,原子的半径 10-1 m(0.1nm),卢瑟福1871年8月30日生于新西兰的纳尔逊,毕业于新西兰大学和剑桥大学。1898年到加拿大任马克歧尔大学物理学教授,达9年之久,这期间他在放射性方面的研究,贡献极多。1907年,任曼彻斯特大学物理学教授。1908年因对放射化学的研究荣获诺贝尔化学奖。1919年任剑桥大学教授,并任卡文迪许实验室主任。1931年英王授予他勋爵的桂冠。1937年10月19日逝世。,1.2 原子的核式结构,1903年英国科学家汤姆逊提出“葡萄干蛋糕”式原子模型或称为“西瓜”模型,认为原子中正电荷均匀分布在原子球体内,电子镶嵌在其中。原子如同西瓜,瓜瓤好比正电荷,电子如同瓜籽分布在其中。,1、汤姆逊原子模型,同时该模型还进一步假定,电子分布在分离的同心环上,每个环上的电子容量都不相同,电子在各自的平衡位置附近做微振动。因而可以发出不同频率的光,而且各层电子绕球心转动时也会发光。这对于解释当时已有的实验结果、元素的周期性以及原子的线光谱,似乎是成功的。,(a)侧视图(b)俯视图。R:放射源;F:散射箔;S:闪烁屏;B:金属匣,粒子:放射性元素发射出的高速带电粒子,其速度约为光速的十分之一,带+2e的电荷,质量约为4MH。散射:一个运动粒子受到另一个粒子的作用而改变原来的运动方向的现象。粒子受到散射时,它的出射方向与原入射方向之间的夹角叫做散射角。,2、粒子散射实验,粒子散射实验是卢斯福于1911年设计的,后来根据实验的结果,卢斯福否定了汤姆逊模型并提出了原子的核式模型,实验结果:大多数散射角很小,约1/8000散射大于90;极个别的散射角等于180。,(a)侧视图(b)俯视图。R:放射源;F:散射箔;S:闪烁屏;B:金属匣,实验装置如上图所示。放射源R中发出一细束粒子,直射到金属箔上以后,由于各粒子所受金属箔中原子的作用不同,所以沿着不同的方向散射。荧光屏S及放大镜M可以沿着以F为中心的圆弧移动。当S和M对准某一方向上,通过F而在这个方向散射的粒子就射到S上而产生闪光,用放大镜M观察闪光,就能记录下单位时间内在这个方向散射的粒子数。从而可以研究粒子通过金属箔后按不同的散射角的分布情况。,这是我一生中从未有过的最难以置信的事件,它的难以置信好比你对一张白纸射出一发15英寸的炮弹,结果却被顶了回来打在自己身上卢瑟福的话,2、粒子散射实验,粒子发生这么大角度的散射,说明它受到的力很大。汤姆逊模型是否可以提供如此大的力?我们来看一看这两个模型对应的力场模型,由于核式模型正电荷集中在原子中心很小的区域,所以无限接近核时,作用力会变得的很大,而汤姆逊模型在原子中心附近则不能提供很强的作用力。下面我们通过计算来看一看,按照汤姆逊模型,粒子的最大偏转角可能是多少。,当rR时,原子受的库仑斥力为:当rR时,原子受的库仑斥力为:当r=R时,原子受的库仑斥力最大:,3、汤姆逊模型的困难,对于汤姆逊模型而言,只有掠入射(r=R)时,入射粒子受力最大,设为Fmax,我们来看看此条件下粒子的最大偏转角是多少?,假设有一个符合汤姆逊模型的带电球体,即均匀带电。那么当粒子射向它时,其所受作用力F(r),假设粒子以速度v入射,并且在原子附近度过的整个时间内都受到力Fmax的作用,那么会产生多大角度的散射呢?,由动量定理得,,其中,表示粒子在原子附件度过的时间,代入Fmax的值,得:,tg很小,所以近似有,,(1),上面的计算中为什么没有考虑核外电子的影响?,这是因为电子的质量仅为粒子质量的1/7300,它的作用是可以忽略的,即使发生对头碰撞,影响也是微小的。当粒子与电子发生正碰时,可以近似看作弹性碰撞,动量和能量均守恒。,(2),结合(1),(2)两式知,如果以能量5MeV的粒子轰击金箔,最大偏转角为15.810-4(rad)0.09 故Tomson模型不成立。,大角散射不可能在汤姆逊模型中发生,散射角大于3的比1%少得多;散射角大于90的几率约为10-3500.必须重新寻找原子的结构模型。,解决方法:减少带正电部分的半径R,使作用力增大。,困难:作用力F太小,不能发生大角散射。,根据实验结果,卢瑟福于1911年提出了原子的核式模型。,原子序数为Z的原子的中心,有一个带正电荷的核(原子核),它所带的正电量Ze,它的体积极小但质量很大,几乎等于整个原子的质量,正常情况下核外有Z个电子围绕它运动。,定性地解释:由于原子核很小,绝大部分粒子并不能瞄准原子核入射,而只是从原子核周围穿过,所以原子核的作用力仍然不大,因此偏转也很小,也有少数粒子有可能从原子核附近通过,这时,r较小,受的作用力较大,就会有较大的偏转,而极少数正对原子核入射的粒子,由于r很小,受的作用力很大,就有可能反弹回来。所以卢瑟福的核式结构模型能定性地解释粒子散射实验。,4、卢瑟福的核式模型,带电粒子的库仑散射,5.库仑散射理论,其中b是瞄准距离,表示入射粒子的最小垂直距离。,动能为EK,电荷为Z1e的带电粒子从无穷远以瞄准距离b射向电荷为Z2e靶核;在核库仑力作用下,偏离入射方向飞向无穷远,出射与入射方向夹角称散射角。这个过程称库仑散射。,-库仑散射因子,当入射粒子为粒子,则Z1=2。,Z1,库仑散射公式推导假设:1.假定只发生单次散射,散射现象只有当入射粒子与原子核距离相近时,才会有明显的作用,所以发生散射的机会很少;2.假定粒子与原子核之间只有库仑力相互作用;3.忽略核外电子的作用,这是由于核外电子的质量不到原子的千分之一,同时粒子运动的速度比较高,估算结果表明核外电子对散射的影响极小,所以可以忽略不计;4.假定原子核静止。这是为了简化计算。,由牛顿第二定律、机械能守恒、角动量守恒可以推导得到。请同学们课下推导!,例、动能为5.00MeV的粒子被金核以90角散射时,它的瞄准距离为多大?,解:有库仑散射公式:,Z1=2,Z2=79,EK=5.00MeV,代入库仑散射公式得,库仑散射公式反应出b和的对应关系。b小,大;b大,小。,要得到大角散射,正电荷必须集中在很小的范围内,粒子必须在离正电荷很近处通过。,问题:b是微观量,至今还不可控制,在实验中也无法测量,所以这个公式还不可能和实验值直接比较。,考虑核的反冲运动时,必须作两体问题处理,引入折合质量 可化为在固定力心库仑场中的运动,故散射公式做相应的修正,讨论,6.卢瑟福散射公式,库仑散射公式对核式模型的散射情形作了理论预言,它是否正确只有实验能给出答案,但目前瞄准距离b仍然无法测量。因此必须设法用可观察的量来代替b,才能进行相关实验。,卢瑟福完成了这项工作,并推导出了著名的卢瑟福公式,卢瑟福散射公式推导,环形面积:,问题:环形面积和空心圆锥体的立体角之间有何关系呢?,空心锥体的立体角:,d与d的对应关系:,公式的物理意义:被每个原子散射到+d之间的空心立体角d内的粒子,必定打在bb-db之间的d这个环形带上。,d称为有效散射截面(膜中每个原子的),又称为微分截面。,近似:设薄膜很薄,薄膜内的原子核对射来的粒子前后不互相覆盖。,设有一薄膜,面积为A,厚度为,单位体积内的原子数为N,则薄膜中的总原子数是:,则N个原子把粒子散射到d中的总有效散射截面为:,所以d也代表粒子散射到之间的几率的大小,故微分截面也称做几率,这就是d的物理意义。将卢瑟福散射公式代入并整理得:,如果有n个粒子射在薄膜的全部面积上,其中有dn个散射到和+d 之间的d中,那么这些粒子必定落在d上。,7.卢瑟福理论的实验验证,从上式可以预言下列四种关系:(1)在同一粒子源和同一散射物的情况下(2)用同一粒子源和同一种材料的散射物,在同一散射角,(3)用同一个散射物,在同一个散射角,(4)用同一个粒子源,在同一个散射角,对同一Nt值,,粒子散射实验装置(a)侧视图(b)俯视图。R:放射源;F:散射箔;S:闪烁屏;B:金属匣,(1)在同一粒子源和同一散射物的情况下,表1.1 粒子在不同角度上的散射,(2)用同一粒子源和同一种材料的散射物,在同一散射角,,对金、银、铜、铝等金属进行了测量,符合上面的关系式。,(3)用同一个散射物,在同一个散射角,,表1.2 粒子散射与其初速度的关系,(4)用同一个粒子源,在同一个散射角,对同一Nt值,,1920年,查德维克改进了实验装置,利用上面的关系,准确地测量了铜、银、铂元素的正电荷数。,表1.3原子正电荷数的测定,例、一束粒子垂直射至一重金属箔上,试求粒子被金属箔散射后,散射角大于60o的粒子与散射角大于90o的粒子数之比。,解:散射角在和+d 之间的粒子数dn与入射到箔上的总粒子数之比是:,而散射角大于角度的粒子数为:,所以散射角大于60o的粒子与散射角大于90o的粒子数之比为,8.原子核大小的推断,粒子散射实验证明,卢瑟福核式模型在一定范围内与实验一致,可以确定粒子确实在原子的整个正电荷的库仑场中运动,也即是说粒子仍在原子核之外,那么,这样就可以用理论有效范围的实验数据,按理论来推算粒子达到离原子核最小的距离,这个距离就是原子核半径的上限。,Z1,角动量守恒定律,由上两式及库仑散射公式代入b可得,能量守恒定律,r=310-14 m(金)r=1.2 10-14 m(铜),10-14 m 10-15 m,设粒子离原子核很远时的速度是v,达到离原子核最小距离rm处的速度是v,越大,rm越小,当=时,rm达到最小值,,原子核线度的上限,粒子的动能全部转化成势能时的距离最小。当入射粒子是粒子时,Z1=2,原子半径数量级为10-10米,原子核半径数量级为10-15-10-14米,相差4-5个数量级,面积相差8-10个数量级,体积相差12-15个数量级。若把原子放大到足球场地那么大,则原子核相当于场地中心的一个黄豆粒。可见原子中是非常空旷的。,例、试问:4.5MeV的粒子与金核对心碰撞时的最小距离是多少?,对心碰撞时=时,rm达到最小值,,解、在卢瑟福散射中,当散射角为时,带正电Z1e的散射粒子与靶核中心的最近距离为,9.粒子散射实验的意义及卢瑟福模型的困难,1、通过实验解决了原子中正、负电荷的排布问题,建立了一个与 实验相符的原子结构模型,使人们认识到原子中的正电荷集中在核上,提出了以核为中心的概念,从而将原子分为核外与核 内两部分,并且认识到高密度的原子核的存在,在原子物理学中起了重要作用。,意义:,2、粒子散射实验为人类开辟了一条研究微观粒子结构的新途径,以散射为手段来探测,获得微观粒子内部信息的方法,为近代物理实验奠定了基础,对近代物理有着巨大的影响。,3、粒子散射实验还为材料分析提供了一种手段。,困难:,1)、原子稳定性问题,经典物理学告诉我们,任何带电粒子在作加速运动的过程中都要以发射电磁波的方式放出能量,那么电子在绕核作加速运动的过程就会不断地向外发射电磁波而不断失去能量,以致轨道半径越来越小,最后湮没在原子核中,并导致原子坍缩。然而实验表明原子是相当稳定的。,2)、原子的同一性问题,任何元素的原子都是确定的,某一元素的所有原子之间是无差别的,这种原子的同一性是卢瑟福模型无法理解的。,3)、原子的再生性问题,一个原子在同外来粒子相互作用以后,这个原子可以恢复到原来的状态,就象未曾发生过任何事情一样。原子的这种再生性,是卢瑟福模型所无法说明的。,Thank You!,本章结束,作业:P20(1,2,3,4,7),