欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    高二数学选修1、2-1-2椭圆的简单几何性质.ppt

    • 资源ID:6069065       资源大小:765KB        全文页数:75页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高二数学选修1、2-1-2椭圆的简单几何性质.ppt

    1知识与技能掌握椭圆的几何性质,掌握标准方程中的a,b以及c,e的几何意义,a,b,c,e之间的相互关系2过程与方法能根据椭圆的方程讨论椭圆的几何性质会用代数方法研究曲线的特殊几何性质,如:对称中心,对称轴,范围等,本节重点:利用椭圆的标准方程研究椭圆的几何性质本节难点:椭圆的几何性质的实际应用1根据曲线的方程,研究曲线的几何性质,并正确地画出它的图形,是解析几何的基本问题之一本节就是根据椭圆的标准方程来研究它的几何性质其性质可分为两类:一类是与坐标系无关的本身固有性质,如长短轴长、焦距、离心率;一类是与坐标系有关的性质,如顶点、焦点,2根据椭圆几何性质解决实际问题时,关键是将实际问题转化为数学问题,建立数学模型,用代数知识解决几何问题,体现了数形结合思想、函数与方程及等价转化的数学思想方法,1通过对椭圆的范围、对称性、特殊点(顶点、焦点、中心)、准线、对称轴及其他特性的讨论从整体上把握曲线的形状、大小和位置,进而掌握椭圆的性质,学习过程中应注意,图形与方程对照、方程与性质对照,只有通过数形结合的方式才能牢固掌握椭圆的几何性质2涉及直线与椭圆位置关系问题时,注意判别式及韦达定理的运用,特别是函数与方程思想在解题中的应用,3利用待定系数法求椭圆标准方程一定要注意先“定型”,“再定量”,在焦点位置不确定时,要注意分类讨论4椭圆上两个重要的三角形(1)椭圆上任意一点P(x,y)(y0)与两焦点F1,F2构成的PF1F2称为焦点三角形,周长为2(ac)(2)椭圆的一个焦点、中心和短轴的一个端点构成了一个直角三角形,称为椭圆的特征三角形,边长满足a2b2c2.,1椭圆的对称中心叫做椭圆的,所以椭圆是对称图形,中心,中心,这四个点叫做椭圆的,线段A1A2叫做椭圆的,它的长等于;线段B1B2叫做椭圆的,它的长等于.显然,椭圆的两个焦点在它的 上4椭圆的焦距与长轴长的比叫做椭圆的,顶点,长轴,2a,短轴,2b,长轴,离心率,例1求椭圆9x216y2144的长轴长、短轴长、离心率、焦点和顶点坐标分析由题目可获取以下主要信息:已知椭圆的方程;研究椭圆的几何性质解答本题可先把方程化成标准形式然后再写出性质,点评解决这类问题关键是将所给方程正确地化为标准形式,然后根据方程判断出椭圆的焦点在哪个坐标轴上,再利用a,b,c之间的关系求椭圆的几何性质,已知椭圆x2(m3)y2m(m0)的离心率e,求m的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标,例2已知椭圆的长轴是短轴的3倍,且过点A(3,0),并且以坐标轴为对称轴,求椭圆的标准方程分析由题目可获取以下主要信息:已知椭圆的几何性质;求椭圆的标准方程解答本题要把已知条件转化为有关a、b、c的关系式,点评已知椭圆的几何性质,求其标准方程的方法步骤:(1)确定焦点所在的位置,以确定椭圆方程的形式,(2)确立关于a、b、c的关系方程(组),求出参数a、b、c,(3)写出标准方程,求适合下面条件的椭圆的标准方程(1)经过点P(5,0)、Q(0,3)(2)长轴的长为10,离心率等于,例3F1、F2为椭圆的两个焦点,过F2的直线交椭圆于P、Q两点,PF1PQ且|PF1|PQ|,求椭圆的离心率分析由题目可获取以下主要信息:已知椭圆上两点与焦点连线的几何关系求椭圆的离心率解答本题的关键是把已知条件化为a、b、c之间的关系,点评所谓求椭圆的离心率e的值,即求 的值,所以,解答这类题目的主要思路是将已知条件转化为a、b、c之间的关系如特征三角形中边边关系、椭圆的定义、c2a2b2等关系都与离心率有直接联系,同时,a、b、c之间是平方关系,所以,在求e值时,也常先考查它的平方值,答案D,例42003年10月15日9时,“神舟”五号载人飞船发射升空,于9时9分50秒准确进入预定轨道,开始巡天飞行该轨道是以地球的中心F2为一个焦点的椭圆选取坐标系如图所示,椭圆中心在原点,近地点A距地面200km,远地点B距地面350km.已知地球半径R6371km.,(1)求飞船飞行的椭圆轨道的方程;(2)飞船绕地球飞行了十四圈后,于16日5时59分返回舱与推进舱分离,结束巡天飞行,飞船共巡天飞行了约6105km,问飞船巡天飞行平均速度是多少?(结果精确到1km/s),(2)从15日9时到16日6时共21个小时,合213600秒,减去开始的9分50秒,即96050590(s),再减去最后多计的1分钟,共计59060650(s),飞船巡天飞行时间是21360065074950(s),所以飞船巡天飞行的平均速度是8km/s.点评解答本题的关键是要明确近地点与远地点的几何意义,把实际问题转化为数学问题求解,答案A,例5已知椭圆x28y28,在椭圆上求一点P,使P到直线l:xy40的距离最小,并求出最小值,点评本题利用了数形结合的思想寻找解题思路,简化了运算过程,也可以设出P点坐标,利用点到直线的距离公式求出最小值,点评本题应用三角形中两边之差小于第三边,两边之和大于第三边的思想,并结合椭圆定义求解.,点评本题根据椭圆定义及性质从不同角度应用了四种方法求椭圆离心率的范围,法一应用了基本不等式,法二构造一元二次方程,应用了方程思路,可谓奇思妙解,法三通过焦半径公式搭建起应用x范围的桥梁,法四应用了极端思想使问题迅速得解,由此可见,在椭圆中建立不等关系的途径或方法还是比较多的,平时解题时需要根据已知条件灵活选择方法,达到快速而又准确地解答题目的目的,辨析上述解法没有讨论焦点的位置,而默认了椭圆的焦点在x轴上,答案A,答案D,答案C,答案A,二、填空题5椭圆25x2y225的长轴长为_,短轴长为_,焦点坐标为_,离心率为_,三、解答题7椭圆过(3,0)点,离心率e,求椭圆的标准方程,

    注意事项

    本文(高二数学选修1、2-1-2椭圆的简单几何性质.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开