欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    高一数学(函数单调性的概念).ppt

    • 资源ID:6068294       资源大小:277KB        全文页数:11页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高一数学(函数单调性的概念).ppt

    问题提出,德国有一位著名的心理学家艾宾浩斯,对人类的记忆牢固程度进行了有关研究.他经过测试,得到了以下一些数据:,函数的单调性,思考1:当时间间隔t逐渐增 大你能看出对应的函数值y有什么变化趋势?通过这个试验,你打算以后如何对待刚学过的知识?思考2:“艾宾浩斯遗忘曲线”从左至右是逐渐下降的,对此,我们如何用数学观点进行解释?,知识探究(一),考察下列两个函数:,(1);(2),思考1:这两个函数的图象分别是什么?二者有何共同特征?,思考2:如果一个函数的图象从左至右逐渐上升,那么当自变量x从小到大依次取值时,函数值y的变化情况如何?,思考3:如图为函数 在定义域I内某个区间D上的图象,对于该区间上任意两个自变量x1和x2,当 时,与 的大小关系如何?,思考4:我们把具有上述特点的函数称为增函数,那么怎样定义“函数 在区间D上是增函数”?,对于函数定义域I内某个区间D上的任意两个自变量 的值,若当 时,都有,则称函数 在区间D上是增函数.,知识探究(二),考察下列两个函数:,(1);(2),思考1:这两个函数的图象分别是什么?二者有何 共同特征?,思考2:我们把具有上述特点的函数称为减函数,那么怎样定义“函数 在区间D上是减函数”?,对于函数定义域I内某个区间D上的任意两个自变量 的值,若当,则称函数 在区间D上是减函数.,思考3:对于函数定义域I内某个区间D上的任意两个自变量 的值,若当 时,都有,则函数 在区间D上是增函数还是减函数?,思考4:如果函数y=f(x)在区间D上是增函数或减函数,则称函数 在这一区间具有(严格的)单调性,区间D叫做函数 的单调区间.那么二次函数在R上具有单调性吗?函数 的单调区间如何?,理论迁移,例1 如图是定义在闭区间-5,6上的函数 的图象,根据图象说出 的单调区间,以及在每一单调区间上,函数 是增函数还是减函数.,例3 试确定函数 在区间上的单调性.,例2 物理学中的玻意耳定律 告诉我们,对于一定量的气体,当其体积V 减小时,压强p将增大.试用函数的单调性 证明.,小 结,利用定义确定或证明函数f(x)在给定的 区间D上的单调性的一般步骤:,1.取数:任取x1,x2D,且x1x2;2.作差:f(x1)f(x2);3.变形:通常是因式分解和配方;4.定号:判断差f(x1)f(x2)的正负;5.小结:指出函数f(x)在给定的区间D上的 单调性.,作业:P32 练习:1,2,3,4.,

    注意事项

    本文(高一数学(函数单调性的概念).ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开