欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    通信原理新讲稿第3章-随机过程.ppt

    • 资源ID:6064187       资源大小:923KB        全文页数:66页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    通信原理新讲稿第3章-随机过程.ppt

    1,3.1 随机过程基本概念3.2 平稳随机过程3.3 高斯随机过程3.4 平稳随机过程通过线性系统3.5 窄带随机过程3.6 正弦波加窄带高斯噪声3.7 高斯白噪声和带限白噪声,第3章 随机过程,2,3.1 随机过程基本概念,一、随机过程(t)的定义:随机样本函数的总体;不同时刻随机变量的集合。,3,3.1 随机过程基本概念,二、随机过程的分布函数随机过程(t)的一维分布函数:随机过程(t)的一维概率密度函数:,4,3.1 随机过程基本概念,随机过程(t)的二维分布函数:随机过程(t)的二维概率密度函数:,5,3.1 随机过程基本概念,随机过程(t)的任意n维分布函数:随机过程(t)的任意n维概率密度函数:,6,3.1 随机过程基本概念,三、随机过程的数字特征1、均值,a(t),7,3.1 随机过程基本概念,三、随机过程的数字特征2、方差,均方值,均值平方,8,3.1 随机过程基本概念,三、随机过程的数字特征3、相关函数4、协方差函数,9,3.2 平稳随机过程,一、定义、性质与特点:若一个随机过程(t)的任意有限维分布函数与时间起点无关,也就是说,对于任意的正整数n和所有实数,有,则称该随机过程是在严格意义下的平稳随机过程,简称严平稳随机过程。,10,3.2 平稳随机过程,性质:该定义表明,平稳随机过程的统计特性不随时间的推移而改变,即它的一维分布函数与时间t无关:而二维分布函数只与时间间隔=t2 t1有关:,11,3.2 平稳随机过程,数字特征:特点:(1)其均值与t无关,为常数a;(2)自相关函数只与时间间隔有关。具有以上两个特点称为广义平稳随机过程。,12,3.2 平稳随机过程,二、各态历经性:设:x(t)是平稳过程(t)的任意一次实现(样本),若,即:过程的数字特征(统计平均)完全可由随机过程中的任一实现的时间平均值来代替。,13,3.2 平稳随机过程,例3-1 设一个随机相位的正弦波为,其中,A和c均为常数;是在(0,2)内均匀分布的随机变量。试讨论(t)是否具有各态历经性。解:(1)先求(t)的统计平均值:数学期望,14,3.2 平稳随机过程,自相关函数,15,3.2 平稳随机过程,可见,(t)的数学期望为常数,而自相关函数与t 无关,只与时间间隔 有关,所以(t)是广义平稳过程。(2)求(t)的时间平均值,16,3.2 平稳随机过程,17,3.2 平稳随机过程,比较统计平均与时间平均,可见:结论:随机相位余弦波是各态历经的。,18,3.2 平稳随机过程,三、自相关函数:平稳随机过程的自相关函数具有以下特点:(t)的平均功率 的偶函数 R()的上界,即最大值。(t)的直流功率(t)的交流功率,19,3.2 平稳随机过程,四、功率谱密度:定义:,20,3.2 平稳随机过程,功率谱密度的计算:维纳-辛钦关系自相关函数与其功率谱密度是一对傅里叶变换。记为,推论,21,3.2 平稳随机过程,对功率谱密度进行积分,可得平稳过程的总功率:各态历经过程的任一样本函数的功率谱密度等于过程的功率谱密度。功率谱密度P(f)具有非负性和实偶性,即有,22,3.2 平稳随机过程,例3-2求随机相位余弦波(t)=Acos(ct+)的自相关函数和功率谱密度。解:在例3-1中,已经求出(t)的相关函数为由维纳-辛钦关系,以及得到,23,3.3 高斯(正态)随机过程,一、定义若任意n维概率密度函数可表示为,则称该随机过程为高斯(正态)随机过程。式中,24,3.3 高斯(正态)随机过程,B为归一化协方差矩阵的行列式,即 其中,25,3.3 高斯(正态)随机过程,二、重要性质1、n维概率密度函数由数字特征确定;2、广义平稳的高斯过程也是严平稳的;3、若不同时刻的取值是不相关的,则也是互相独立的;4、高斯过程经过线性变换后生成的过程仍是高斯过程。也可以说,若线性系统的输入为高斯过程,则系统输出也是高斯过程。,26,3.3 高斯(正态)随机过程,三、高斯随机变量高斯过程在任一时刻上是一个高斯随机变量,其一维概率密度函数为,27,3.3 高斯(正态)随机过程,性质:f(x)对称于直线 x=a a表示分布中心,称为标准偏差,表示集中程度,图形将随着 的减小而变高和变窄。当a=0和=1时,称为标准化的正态分布。,28,3.3 高斯(正态)随机过程,计算:正态分布函数令 得,29,3.3 高斯(正态)随机过程,用互补误差函数erfc(x)表示正态分布函数:当x 2时,,30,3.3 高斯(正态)随机过程,用Q函数表示正态分布函数:Q函数定义:Q函数和erfc函数的关系:Q函数和分布函数F(x)的关系:,31,3.4 平稳随机过程通过线性系统,1、输出过程o(t)的均值 由于设输入过程是平稳的,则有可见输出过程的均值是常数。,32,3.4 平稳随机过程通过线性系统,2、输出过程o(t)的自相关函数:根据输入过程的平稳性,有于是,33,3.4 平稳随机过程通过线性系统,3、输出过程o(t)的功率谱密度令=+-,代入上式,得到即,34,3.4 平稳随机过程通过线性系统,输出过程o(t)的概率分布如果线性系统的输入过程是高斯型的,则系统的输出过程也是高斯型的。,35,3.5 窄带随机过程,定义:若随机过程(t)的谱密度集中在中心频率fc附近相对窄的频带范围f 内,即满足f fc的条件,且 fc 远离零频率,则称该(t)为窄带随机过程。功率谱密度图,36,3.5 窄带随机过程,波形:窄带随机过程的表示:,37,3.5 窄带随机过程,式中(t)的同相分量(t)的正交分量(t)的统计特性由a(t)和(t)或c(t)和s(t)的统计特性确定。若(t)的统计特性已知,则a(t)和(t)或c(t)和s(t)的统计特性也随之确定。,38,3.5 窄带随机过程,3.5.1 c(t)和s(t)的统计特性数学期望:对(t)求数学期望得到 因为(t)平稳且均值为零,故对于任意的时间t,都有E(t)=0,所以,39,3.5 窄带随机过程,(t)的自相关函数:因为(t)是平稳的,故有 这就要求上式的右端与时间t无关,而仅与有关。因此,若令 t=0,上式仍应成立,,40,3.5 窄带随机过程,它变为因与时间t无关,以下二式自然成立所以,上式变为,41,3.5 窄带随机过程,再令 t=/2c,同理可以求得由以上分析可知,若窄带过程(t)是平稳的,则c(t)和s(t)也必然是平稳的。进一步分析,下两式应同时成立,,42,3.5 窄带随机过程,故有同相分量c(t)和正交分量s(t)具有相同的自相关函数。根据互相关函数的性质,应有代入上式,得到,表明Rsc()是 的奇函数,所以。因此,同一时刻的同相和正交分量是互相正交的。,43,3.5 窄带随机过程,将 代入 得即结论:(t)、c(t)和s(t)具有相同的平均功率或方差。,44,3.5 窄带随机过程,根据平稳性,过程的特性与变量t无关,故由式 得到因为(t)是高斯过程,所以,c(t1),s(t2)一定是高斯随机变量,从而c(t)、s(t)也是高斯过程。,45,3.5 窄带随机过程,根据 可知,c(t)与s(t)在=0处互不相关,又由于它们是高斯型的,因此c(t)与s(t)也是统计独立的。结论:一个均值为零的窄带平稳高斯过程(t),它的同相分量c(t)和正交分量s(t)同样是平稳高斯过程,而且均值为零,方差也相同。此外,在同一时刻上得到的c和s是互不相关的或统计独立的。,46,3.5 窄带随机过程,3.5.2 a(t)和(t)的统计特性联合概率密度函数 f(a,)根据概率论知识有由可以求得,47,3.5 窄带随机过程,于是有式中 a 0,=(0 2),48,3.5 窄带随机过程,a的一维概率密度函数可见,a服从瑞利(Rayleigh)分布。,49,3.5 窄带随机过程,的一维概率密度函数可见,服从均匀分布。,50,3.5 窄带随机过程,结论一个均值为零,方差为2的窄带平稳高斯过程(t),其包络a(t)的一维分布是瑞利分布,相位(t)的一维分布是均匀分布,并且就一维分布而言,a(t)与(t)是统计独立的,即有,51,3.6 正弦波加窄带高斯噪声,正弦波加窄带高斯噪声的表示式式中,52,3.6 正弦波加窄带高斯噪声,正弦波加窄带高斯噪声的包络和相位表示式包络:相位:包络的概率密度函数 f(z)由,53,3.6 正弦波加窄带高斯噪声,根据zc,zs与z,之间的随机变量关系,求得在给定相位 的条件下的z与的联合概率密度函数,54,3.6 正弦波加窄带高斯噪声,然后求给定条件下的边际分布,即由于故有式中I0(x)第一类零阶修正贝塞尔函数,55,3.6 正弦波加窄带高斯噪声,因此由上式可见,f(,z)与无关,故称为广义瑞利分布,又称莱斯(Rice)分布。,56,3.6 正弦波加窄带高斯噪声,讨论当信号很小时,即A 0时,上式中(Az/n2)很小,I0(Az/n2)1,上式的莱斯分布退化为瑞利分布。当(Az/n2)很大时,有这时上式近似为高斯分布,即,57,3.6 正弦波加窄带高斯噪声,包络概率密度函数 f(z)曲线,58,3.6 正弦波加窄带高斯噪声,正弦波加窄带高斯噪声的相位的统计特性,59,3.7 高斯白噪声和带限白噪声,1、白噪声:功率谱密度在所有频率上均为常数的噪声,即 双边功率谱密度或 单边功率谱密度式中 n0 正常数白噪声的自相关函数:,60,3.7 高斯白噪声和带限白噪声,白噪声和其自相关函数的曲线,61,3.7 高斯白噪声和带限白噪声,白噪声的功率或,62,3.7 高斯白噪声和带限白噪声,2、低通白噪声:如果白噪声通过理想矩形的低通滤波器或理想低通信道,则输出的噪声称为低通白噪声。功率谱密度由于功率谱频带受限亦称为带限白噪声。自相关函数,63,3.7 高斯白噪声和带限白噪声,功率谱密度和自相关函数曲线,64,3.7 高斯白噪声和带限白噪声,3、带通白噪声:如果白噪声通过理想矩形的带通滤波器或理想带通信道,则其输出的噪声称为带通白噪声。功率谱密度,65,3.7 高斯白噪声和带限白噪声,自相关函数平均功率,66,3.7 高斯白噪声和带限白噪声,带通白噪声的功率谱和自相关函数曲线,

    注意事项

    本文(通信原理新讲稿第3章-随机过程.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开