欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    计量经济学第七讲-时间序列分析.ppt

    • 资源ID:6059904       资源大小:401KB        全文页数:82页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    计量经济学第七讲-时间序列分析.ppt

    Tuesday,16 Dec.2008,CUFE,第七讲,时间序列分析,Time Series Analysis,Tuesday,16 Dec.2008,CUFE,引 言,大多数经济数据特别是宏观经济数据为时间序列数据。所以对时间序列进行计量经济学分析在计量经济学中占有十分重要地位。,本章着重介绍时间序列分析中用到的一些基本概念,以便使学生对这一领域的研究有一个初步的了解。为进一步的学习和研究打下基础。,时间序列变量与横截面变量在性质上有很大不同。比如,对于两个没有任何关系的时间序列变量,如果用传统的估计方法将其中之一对另一变量进行回归,往往都能得到从统计数据来看较好的拟合结果,这就是所谓的“谬误回归”或“伪回归”(spurious regression)问题。所以通过对时间序列的样本值的分析来估计产生这个时间序列样本的随机过程的性质,对回归分析是十分重要的。,Tuesday,16 Dec.2008,CUFE,时间序列分析Time Series Analysis,第一节时间序列分析的基本概念第二节平稳性检验第三节协整,Tuesday,16 Dec.2008,CUFE,经济分析通常假定所研究的经济理论中涉及的变量之间存在着长期均衡关系。按照这一假定,在估计这些长期关系时,计量经济分析假定所涉及的变量的均值和方差是常数,不随时间而变。,第一节、时间序列分析的基本概念,然而经验研究表明,在大多数情况下,时间序列变量并不满足这一假设。因此,以这种假设为基础的估计方法所给出的经典t检验和F检验,会给出产生误导作用的结果,也就是所谓的“伪回归”问题(spurious regression problem)。,为解决这类问题,研究人员提出了不少对传统估计方法的改进建议,其中最重要的两项是:对变量的非平稳性(non-stationarity)的系统性检验和协整(cointegration)。,Tuesday,16 Dec.2008,CUFE,协整(cointegration)协整分析被认为是上世纪八十年代中期以来计量经济学领域最具革命性的进展。,简单地说,协整分析涉及的是一组变量,它们各自都是不平稳的(含义是随时间的推移而上行或下行),但它们一起漂移。这种变量的共同漂移使得这些变量之间存在长期的线性关系,因而使人们能够研究经济变量间的长期均衡关系。如果这些长时间内的线性关系不成立,则对应的变量被称为是“非协整的”(noncointegrated)。,Tuesday,16 Dec.2008,CUFE,误差修正模型(ECM),一般说来,协整分析是用于非平稳变量组成的关系式中长期均衡参数估计的技术。它是用于动态模型(dynamic models)的设定、估计和检验的一种新技术。因此,它可用来检验基础经济理论是否正确。此外,协整分析亦可用于短期或非均衡参数的估计,这是因为短期参数的估计可以通过协整方法使用长期参数估计值,采用的模型是误差修正模型(ECM:error correction model)。,下面先介绍所涉及的一些术语和定义。,Tuesday,16 Dec.2008,CUFE,平稳性(stationarity),第一节、时间序列分析的基本概念,任何时间序列数据都可看成由一个随机过程产生的结果或者说是一个随机过程的一个实现:设X1,X2,Xn为一随机时间序列,其中每一项都是随机的,则有关这一随机时间序列的观测值所组成的序列就是这一随机时间序列的一个实现或者说一个样本。,我们对时间序列的研究往往是根据随机时间序列的一个样本来推断时间序列总体的性质进而进行预测。在前面的回归分析中,我们曾假定解释变量是非随机的,但实际上大多数经济数据特别是宏观经济数据,由于其为时间序列数据的时候居多,无论是被解释变量还是解释变量的观测数据往往可看作是随机时间序列的一个实现,从而使解释变量具有随机性。,Tuesday,16 Dec.2008,CUFE,平稳性(stationarity),第一节、时间序列分析的基本概念,当解释变量与回归模型的随机扰动项相关时,就出现了内生性问题;当解释变量与回归模型中的随机扰动项无关时,解释变量即使是随机的,经典回归的有关结论仍然适用,但前提条件是模型设定正确。,然而,模型设定是否正确在相当程度上取决于时间序列的稳定特征。时间序列的平稳性分析不仅对时间序列本身十分重要,而且对包括时间序列的经典回归分析十分重要。,Tuesday,16 Dec.2008,CUFE,平稳性(stationarity)严格平稳性(strict-sense stationarity)如果一个时间序列Xt的联合概率分布不随时间而变,即对于任何n和k,X1,X2,Xn的联合概率分布与X1+k,X2+k,Xn+k的联合分布相同,则称该时间序列是严格平稳的。,第一节、时间序列分析的基本概念,Tuesday,16 Dec.2008,CUFE,平稳性(stationarity)弱平稳性(wide-sense stationarity)由于在实践中上述联合概率分布很难确定,我们用随机变量Xt(t=1,2,)的均值、方差和协方差代替之。如果一个时间序列满足下列条件:(1)均值 E(Xt)=,t=1,2,(2)方差 Var(Xt)=E(Xt-)2=2,t=1,2,(3)协方差 Cov(Xt,Xt+k)=E(Xt-)(Xt+k-)=rk,t=1,2,;k0,第一节、时间序列分析的基本概念,则该时间序列是弱平稳的。,Tuesday,16 Dec.2008,CUFE,平稳性和非平稳性 通常情况下,我们所说的平稳性指的就是弱平稳性。一般来说,如果一个时间序列的均值和方差在任何时间保持恒定,并且两个时期t和t+k之间的协方差(或自协方差)仅依赖于两时期之间的距离(间隔或滞后)k,而与计算这些协方差的实际时期t无关,则该时间序列是平稳(stationary)的。只要这三个条件不全满足,该时间序列就是非平稳(nonstationary)的。事实上,大多数经济时间序列是非平稳的。例如,在图7.1中,某国的私人消费(PC)和个人可支配收入(PDI)这两个时间序列都有一种向上的趋势,几乎可以断定它们不满足平稳性条件(7.1),因而是非平稳的。,第一节、时间序列分析的基本概念,Tuesday,16 Dec.2008,CUFE,Tuesday,16 Dec.2008,CUFE,几种有用的时间序列模型白噪声(white noise)白噪声通常用t表示,是一个纯粹的随机过程。满足(1)E(t)=0,t成立;(2)Var(t)=2,t成立;(3)Cov(t,t+k)=0,t和k0;白噪声可用符号表示为:tIID(0,2)(注:这里IID为Independently Identically Distributed(独立同分布)的缩写)。,Tuesday,16 Dec.2008,CUFE,几种有用的时间序列模型随机漫步(random walk)随机漫步是一个简单的随机过程,随机时间序列Xt由下式生成:Xt=Xt-1+t(7.5)式中,t为白噪声。Xt的均值:E(Xt)=E(Xt-1+t)=E(Xt-1)+E(t)=E(Xt-1)表明Xt的均值不随时间而变。,Tuesday,16 Dec.2008,CUFE,几种有用的时间序列模型随机漫步(random walk)Xt的方差:对式(7.5)进行一系列置换有:Xt=Xt-1+t=Xt-2+t-1+t=X0+i 式中,X0为Xt的初始值,可假定为任何常数或取初值为零。,Tuesday,16 Dec.2008,CUFE,几种有用的时间序列模型随机漫步(random walk)则表明Xt的方差随时间而增大,平稳性的第二个条件不满足。因此,随机漫步时间序列是非平稳时间序列。可是,若将式(7.5)写成一阶差分形式:Xt=t这个一阶差分新变量Xt 是平稳的,因为它就等于白噪声t,而后者是平稳时间序列。随机漫步过程式(7.5)也是最简单的非平稳过程。,Tuesday,16 Dec.2008,CUFE,几种有用的时间序列模型带漂移项的随机漫步(random walk with drift)Xt=+Xt-1+t(7.7)式中,为一非零常数;t为白噪声。之所以被称为“漂移项”,是因为式(7.7)的一阶差分Xt=Xt Xt-1=+t这表明时间序列Xt向上或向下漂移,取决于的符号是正还是负。显然,带漂移项的随机漫步时间序列也是非平稳时间序列。,Tuesday,16 Dec.2008,CUFE,4、自回归过程 随机漫步过程(7.5)(Xt=Xt1+t)是最简单的非平稳过程。它是 Xt=Xt1+t(7.8)的特例,(7.8)称为一阶自回归过程(AR(1),该过程在11时是平稳的,其他情况下,则为非平稳过程。,Tuesday,16 Dec.2008,CUFE,几种有用的时间序列模型自回归过程(AR(q))若随机时间序列Xt由下式生成 Xt=c+Xt-1+t(7.8)式中,c,为常数,t为白噪声过程,则式(7.8)称为一阶自回归过程,记为AR(1)。当1时,AR(1)过程为平稳过程。,Tuesday,16 Dec.2008,CUFE,几种有用的时间序列模型自回归过程(AR(q))事实上,(1)当1时,AR(1)过程的均值为一常数:,所以,,Tuesday,16 Dec.2008,CUFE,几种有用的时间序列模型自回归过程(AR(q))(2)当1时,AR(1)过程的方差为一常数:,Tuesday,16 Dec.2008,CUFE,几种有用的时间序列模型自回归过程(AR(q))(3)当1时,AR(1)过程的滞后的自协方差为一个与滞后k有关而与时间无关的常数:,Tuesday,16 Dec.2008,CUFE,几种有用的时间序列模型自回归过程(AR(q))更一般地,式(7.8)又是:的特例。式(7.9)称为q阶自回归过程,记为AR(q)。运用滞后算子L,AR(q)可写成可以证明(略),如果特征方程的所有根的绝对值均大于1,则此过程式(7.9)是平稳的,否则为非平稳过程。,Tuesday,16 Dec.2008,CUFE,单整的时间序列(integrated series),从式(7.6)可知,随机漫步序列的一阶差分序列Xt=Xt Xt-1是平稳序列。在这种情况下,我们说原非平稳序列Xt是“一阶单整的”,表示为I(1)。与此类似,若非平稳序列必须取二阶差分(2Xt=Xt Xt-1)才变为平稳序列,则原序列是“二阶单整的”,表示为I(2)。一般地,若一个非平稳序列必须取d阶方差才变为平稳序列,则原序列是“d阶单整的”(integrated of order d),表示为I(d)。由定义XtI(d)不难看出,I(0)表示的是平稳序列,意味着该序列无须差分即是平稳的;另一方面,如果一个序列不管差分多少次,也不能变为平稳序列,则称为“非单整的”,Tuesday,16 Dec.2008,CUFE,第二节 平稳性的检验 平稳性检验的方法可分为两类:传统方法和现代方法。前者使用自相关函数(Autocorrelation function),后者使用单位根(Unit roots)。单位根方法是目前最常用的方法,因此本节中,我们仅介绍单位根方法。,Tuesday,16 Dec.2008,CUFE,一 单位根 考察(7.8)式的一阶自回归过程,即 Xt=Xt1+t(7.11)其中t为白噪声,此过程可写成 XtXt1=t 或(1L)Xt=t(7.12)其中L为滞后运算符,其作用是取时间序列的滞后,如Xt 的一期滞后可表示为L(Xt),即 L(Xt)=Xt1,Tuesday,16 Dec.2008,CUFE,由上节所知,自回归过程Xt平稳的条件是其特征方程的所有根的绝对值大于1。由于这里特征方程为1L=0,该方程 仅有一个根L=1/,因而平稳性要求11。因此,检验Xt的平稳性的原假设和备择假设为:H0:1 Ha:1 接受原假设H0表明Xt是非平稳序列,而拒绝原假设(即接受备择假设Ha)则表明Xt是平稳序列。,Tuesday,16 Dec.2008,CUFE,单位根检验方法的由来 在=1的情况下,即若原假设为真,则(7.11)就是随机漫步过程(7.5),从上节得知,它是非平稳的。因此,检验非平稳性就是检验=1,或者说,就是检验单位根。换句话说,单位根是表示非平稳性的另一方式。这样一来,就将对非平稳性的检验转化为对单位根的检验,这就是单位根检验方法的由来。,Tuesday,16 Dec.2008,CUFE,(7.11)式 Xt=Xt1+t 两端各减去Xt-1,我们得到 XtXt1=Xt1Xt1+t即 Xt=Xt1+t(7.13)其中是差分运算符,=1。假设为正(绝大多数经济时间序列确实如此),前面的假设 H0:1 Ha:1可写成如下等价形式:,Tuesday,16 Dec.2008,CUFE,H0:0 Ha:0 在=0的情况下,即若原假设为真,则相应的过程是非平稳的。换句话说,非平稳性或单位根问题,可表示为=1或=0。从而我们可以将检验时间序列Xt的非平稳性的问题简化成在方程(7.11)的回归中,检验参数=1 是否成立或者在方程(7.13)的回归中,检验参数=0是否成立。,Tuesday,16 Dec.2008,CUFE,这类检验可用t检验进行,检验统计量为:或(7.14)其中,和 分别为参数估计值 和 的标准误差,即 这里的问题是,(7.14)式计算的t值不服从t分布,而是服从一个非标准的甚至是非对称的分布。因而不能使用t分布表,需要用另外的分布表。,Tuesday,16 Dec.2008,CUFE,二 Dickey-Fuller检验(DF检验)迪奇(Dickey)和福勒(Fuller)以蒙特卡罗模拟为基础,编制了(7.14)中t统计量的临界值表,表中所列已非传统的t统计值,他们称之为统计值。这些临界值如表7.1所示。后来该表由麦金农(Mackinnon)通过蒙特卡罗模拟法加以扩充。,Tuesday,16 Dec.2008,CUFE,Tuesday,16 Dec.2008,CUFE,Tuesday,16 Dec.2008,CUFE,有了表,我们就可以进行DF检验了,DF检验按以下两步进行:第一步:对(7.13)式执行OLS回归,即估计 Xt=Xt-1+t(7.15)得到常规t值。第二步:检验假设 H0:=0 Ha:0 用上一步得到的t值与表7.1中查到的临界值比较,判别准则是:若 t,则接受原假设H0,即Xt非平稳。若t,则拒绝原假设H0,Xt为平稳序列。,Tuesday,16 Dec.2008,CUFE,Dickey和Fuller注意到临界值依赖于回归方程的类型。因此他们同时还编制了与另外两种类型方程中相对应的统计表,这两类方程是:Xt=+Xt-1+t(7.16)和 Xt=+t+Xt-1+t(7.17)二者的临界值分别记为和T。这些临界值亦列在表7.1中。尽管三种方程的临界值有所不同,但有关时间序列平稳性的检验依赖的是Xt-1的系数,而与、无关。例7.1 检验某国私人消费时间序列的平稳性。,Tuesday,16 Dec.2008,CUFE,Tuesday,16 Dec.2008,CUFE,用表7.2中的私人消费(Ct)时间序列数据,估计与(7.16)和(7.17)相对应的方程,分别得到如下估计结果:(1)=12330.48-0.01091 Ct-1 R2=0.052(t:)(5.138)(-1.339)DW=1.765t-1 R2=0.057(t:)(1.966)(0.436)(-0.5717)DW=1.716 两种情况下,t值分别为-1.339和-0.571,二者分别大于表7.1中从0.01到0.10的各种显著性水平下的值和值。因此,两种情况下都不能拒绝原假设,即私人消费时间序列有一个单位根,或换句话说,它是非平稳序列。,Tuesday,16 Dec.2008,CUFE,下面看一下该序列的一阶差分(Ct)的平稳性。做类似于上面的回归,得到如下结果:(3)2=7972.671-0.85112Ct-1 R2=0.425(t:)(4.301)(-4.862)DW=1.967(4)2=10524.35-114.461t-0.89738Ct-1 R2=0.454(t:)(3.908)(-1.294)(-5.073)DW=1.988其中2Ct=Ct-Ct-1。,Tuesday,16 Dec.2008,CUFE,两种情况下,t值分别为-4.862和-5.073,二者分别小于表7.1中从0.01到0.10的各种显著性水平下的值和T值。因此,都拒绝原假设,即私人消费一阶差分时间序列没有单位根,或者说该序列是平稳序列。综合以上结果,我们的结论是:Ct是平稳序列,CtI(0)。而Ct是非平稳序列,由于CtI(0),因而 CtI(1)。,Tuesday,16 Dec.2008,CUFE,第三节 协整 让我们考察弗里德曼的持久收入假设:私人总消费(Ct)是持久私人消费和暂时性私人消费(t)之和,持久私人消费与持久个人可支配收入(Yt)成正比。则消费函数为:(7.18)其中011。用表7.2中数据对此消费函数进行OLS估计,假定持久个人收入等于个人可支配收入,我们得到:=0.80969Yt R2=0.9924(t:)(75.5662)DW=0.8667,Tuesday,16 Dec.2008,CUFE,除DW值低以外,估计结果很好。t值很高表明回归系数显著,R2也很高,表明拟合很好。可是,由于方程中的两个时间序列是趋势时间序列或非平稳时间序列,因此这一估计结果有可能形成误导。结果是,OLS估计量不是一致估计量,相应的常规推断程序不正确。这种结果看上去非常好但涉及的变量是趋势时间序列的回归被Granger 和 Newbold 称为“伪回归”(Spurious regression)。当回归方程中涉及的时间序列是非平稳时间序列时,OLS估计量不再是一致估计量,相应的常规推断程序会产生误导。这就是所谓的“伪回归”问题。,Tuesday,16 Dec.2008,CUFE,他们指出,如果在时间序列的回归中DW值低于R2,则应怀疑有伪回归的可能。我们上面的结果正是如此(R2=0.9924 DW=0.8667)。,考虑到经济学中大多数时间序列是非平稳序列,则我们得到伪回归结果是常见的事。避免非平稳性问题的常用方法是在回归中使用时间序列的一阶差分。可是,使用变量为差分形式的关系式更适合描述所研究的经济现象的短期状态或非均衡状态,而不是其长期或均衡状态,描述所研究经济现象的长期或均衡状态应采用变量本身。,Tuesday,16 Dec.2008,CUFE,由上面的讨论,自然引出了一个明显的问题:我们使用非均衡时间序列时是否必定会造成伪回归?对此问题的回答是,如果在一个回归中涉及的趋势时间序列“一起漂移”,或者说“同步”,则可能没有伪回归的问题,因而取决于t检验和F检验的推断也没有问题。这种非均衡时间序列的“同步”,引出了我们下面要介绍的“协整”概念。,Tuesday,16 Dec.2008,CUFE,一协整的概念 在方程(7.18)中,持久收入假设要求两时间序列Ct和Yt的线性组合,即时间序列Ct1Yt必须是平稳的,这是因为此序列等于t,而暂时性私人消费(t)按定义是平稳时间序列。可是,Ct和Yt都是非平稳时间序列,事实上,不难验证:CtI(1),YtI(1)。也就是说,尽管CtI(1),YtI(1),但持久收入假设要求它们的线性组合t=Ct1Yt是平稳的,即t=Ct1YtI(0)。在这种情况下,我们说时间序列Ct和Yt是协整的(Cointegrated)。下面给出协整(Cointegration)的正式定义。,Tuesday,16 Dec.2008,CUFE,协整的定义 如果两时间序列YtI(d),XtI(d),并且这两个时间序列的线性组合a1Yt+a2Xt 是(d-b)阶单整的,即a1Yt+a2XtI(d-b)(db0),则Yt 和Xt被称为是(d,b)阶协整的。记为 Yt,XtCI(d,b)这里CI是协整的符号。构成两变量线性组合的系数向量(a1,a2)称为“协整向量”。,Tuesday,16 Dec.2008,CUFE,下面给出本节中要研究的两个特例。1、Yt,XtCI(d,d)在这种情况下,d=b,使得a1Yt+a2XtI(0),即两时间序列的线性组合是平稳的,因而 Yt,XtCI(d,d)。2、Yt,XtCI(1,1)在这种情况下,d=b=1,同样有a1Yt+a2XtI(0),即两时间序列的线性组合是平稳的,因而 Yt,XtCI(1,1)。,Tuesday,16 Dec.2008,CUFE,让我们考虑下面的关系 Yt=0+1Xt(7.19)其中,YtI(1),XtI(1)。当0=Yt01Xt时,该关系处于长期均衡状态。对长期均衡的偏离,称为“均衡误差”,记为t:t=Yt01Xt,Tuesday,16 Dec.2008,CUFE,若长期均衡存在,则均衡误差应当围绕均衡值0波动。也就是说,均衡误差t应当是一个平稳时间序列,即应有 tI(0),E(t)=0。按照协整的定义,由于 YtI(1),XtI(1),且线性组合 t=Yt01XtI(0)因此,Yt 和Xt是(1,1)阶协整的,即 Yt,XtCI(1,1)协整向量是(1,0,1),Tuesday,16 Dec.2008,CUFE,综合以上结果,我们可以说,两时间序列之间的协整是表示它们之间存在长期均衡关系的另一种方式。因此,若Yt 和Xt是协整的,并且均衡误差是平稳的且具有零均值,我们就可以确信,方程 Yt=0+1Xt+t(7.20)将不会产生伪回归结果。由上可知,如果我们想避免伪回归问题,就应该在进行回归之前检验一下所涉及的变量是否协整。,Tuesday,16 Dec.2008,CUFE,二协整的检验 我们下面介绍用于检验两变量之间协整的两种简单方法。1、Engle-Granger法 步骤1.用上一节介绍的单位根方法求出两变量的单整的阶,然后分情况处理,共有三种情况:(1)若两变量的单整的阶相同,进入下一步;(2)若两变量的单整的阶不同,则两变量不是协整的;(3)若两变量是平稳的,则整个检验过程停止,因为你可以采用标准回归技术处理。,Tuesday,16 Dec.2008,CUFE,步骤2.若两变量是同阶单整的,如I(1),则用OLS法估计长期均衡方程(称为协整回归):Yt=0+1Xt+t并保存残差et,作为均衡误差t的估计值。应注意的是,虽然估计出的协整向量(1,)是真实协整向量(1,0,1)的一致估计值,这些系数的标准误差估计值则不是一致估计值。由于这一原因,标准误差估计值通常不在协整回归的结果中提供。,Tuesday,16 Dec.2008,CUFE,步骤3.对于两个协整变量来说,均衡误差必须是平稳的。为检验其平稳性,对上一步保存的均衡误差估计值(即协整回归的残差et)应用单位根方法。具体作法是将DickeyFuller检验法用于时间序列et,也就是用OLS法估计形如下式的方程:et=et-1+t(7.21)有两点须提请注意:(1)(7.21)式不包含常数项,这是因为OLS残差et应以0为中心波动。(2)DickeyFuller统计量不适于此检验,表7.3提供了用于协整检验的临界值表。,Tuesday,16 Dec.2008,CUFE,Tuesday,16 Dec.2008,CUFE,Tuesday,16 Dec.2008,CUFE,由表7-3中可见,Ct和Yt都是非平稳的,而Ct和Yt都是平稳的。这就是说,CtI(1),YtI(1)因而我们可以进入下一步。,Tuesday,16 Dec.2008,CUFE,Tuesday,16 Dec.2008,CUFE,第四步,得出有关两变量是否协整的结论。用t3.150与表73中的临界值相比较(m=2),采用显著性水平=0.05,t大于临界值,因而接受et非平稳的原假设,意味着两变量不是协整的,我们不能说在私人消费和个人可支配收入之间存在着长期均衡关系。可是,如果采用显著性水平=0.10,则3.150与表73 中的临界值大致相当,因而可以预期,若=0.11,t将小于临界值,我们接受et为平稳的备择假设,即两变量是协整的,或者说两变量之间存在着长期均衡关系。,Tuesday,16 Dec.2008,CUFE,2、Durbin-Watson法 此方法非常简单,步骤如下:步骤1.估计协整回归方程 Yt=0+1Xt+t 保存残差et,计算DW统计值(现称为“协整回归”DurbinWatson统计值(CRDW),即 CRDW=其中 为残差的算术平均值。,Tuesday,16 Dec.2008,CUFE,步骤2.根据下述原假设和备择假设得出有关两变量协整的结论:H0:et非平稳,即非协整 H1:et平稳,即协整 若CRDWd,则接受原假设H0;若CRDWd,则拒绝原假设H0。这里原假设成立的临界d值为d=0,对应于显著性水平为0.01,0.05和0.10的临界值分别为 0.511,0.386和0.322。,Tuesday,16 Dec.2008,CUFE,例7.3 某国私人消费和个人可支配收入的协整 将CRDW应用于上例。第一步:由上例中(7.26)式知CRDW=1.021 第二步:因为CRDW=1.021大于上面提到的临界值,故拒绝原假设,接受备择假设,因此得出结论:私人消费和个人可支配收入可以协整。,Tuesday,16 Dec.2008,CUFE,三误差修正模型(ECM)的估计 协整分析中最重要的结果可能是所谓的“格兰杰代表定理”(Granger representation theorem)。按照此定理,如果两变量Yt和Xt是协整的,则它们之间存在长期均衡关系。当然,在短期内,这些变量可以是不均衡的,扰动项是均衡误差t。两变量间这种短期不均衡关系的动态结构可以由误差修正模型(error correction model)来描述,ECM模型是由Sargan提出的。这一联系两变量的短期和长期行为的误差修正模型由下式给出:,Tuesday,16 Dec.2008,CUFE,Yt=滞后的(Yt,Xt)+t-1+vt(7.28)10 其中 YtI(1),XtI(1)Yt,XtCI(1,1)t=Yt01XtI(0)vt=白噪声,为短期调整系数。,(7.28)式是ECM模型的一般形式,实践中可根据情况建立具体的ECM模型。最简单的是一阶ECM模型,形式如下:,Tuesday,16 Dec.2008,CUFE,不难看出,在(7.28)中,所有变量都是平稳的,因为 YtI(1),XtI(1)YtI(0),XtI(0);Yt,XtCI(1,1)tI(0)因此,有人或许会说,该式可用OLS法估计。但事实上不行,因为均衡误差t不是可观测变量。因而在估计该式之前,要先得到这一误差的值。,Tuesday,16 Dec.2008,CUFE,Engle 和 Granger建议采用下述两步方法估计方程(7.28):第一步:估计协整回归方程 Yt=0+1Xt+t得到协整向量的一致估计值(1,),用它得出均衡误差t的估计值 et=Yt Xt第二步:用OLS法估计下面的方程 Yt=滞后的(Yt,Xt)+et-1+vt(7.29),Tuesday,16 Dec.2008,CUFE,例7.4 估计某国私人消费和个人可支配收入之间的误差修正模型。第一步:由例7.2 中7.26式协整回归的结果:=11907.23+0.779585Yt(7.30)(t:)(3.123)(75.566)R2=0.994 DW=1.021 我们得到残差et。,Tuesday,16 Dec.2008,CUFE,第二步:估计误差修正模型,结果如下:=5951.557+0.28432Yt 0.19996et-1(7.31)(t:)(7.822)(6.538)(2.486)R2=0.572 DW=1.941(7.31)中的结果表明个人可支配收入Yt的短期变动对私人消费存在正向影响。此外,由于短期调整系数是显著的,表明每年实际发生的私人消费与其长期均衡值的偏差中的20%(0.19996)被修正。,Tuesday,16 Dec.2008,CUFE,以韩德瑞()为代表的动态建模方法(也称为伦敦经济学院(LSE)方法)指出自回归分布滞后模型(ADL)是最通用的线性模型形式。当变量为非平稳时间序列时ADL模型尤为适用,因为只要模型包括了足够多的滞后项,就一定能摆脱单位根的困扰。当变量间存在协整关系时,ECM模型便成为ADL模型的一个特例。以一阶ADL模型(7.31)为例,Hendry对模型变量进行了等价变换,得到(7.32)所示的ECM模型。,Tuesday,16 Dec.2008,CUFE,即,Tuesday,16 Dec.2008,CUFE,式(7.33)将 依次分解为三个具有不同含义的部分:短期扰动、非均衡项和白噪声。称为负反馈系数。当YtI(1),XtI(1)时,式(7.33)方程左边YtI(0),方程右边XtI(0),tI(0)。如果非均衡项 I(0),则 Yt 与 Xt 存在(1,1)阶协整关系。,Tuesday,16 Dec.2008,CUFE,Hendry论证了 对应经济理论模型中的长期均衡解,它自身不含任何变动的趋势。当外生变量的波动引起 时,该相对于长期均衡解的非均衡项在负反馈系数的作用下引起的延迟波动,促使重新回到其长期均衡解,因此称式(7.33)为“均衡修正模型”或“误差修正模型”。,Tuesday,16 Dec.2008,CUFE,实际建模中,Hendry的动态建模方法主张从“一般到特殊”的原则,从包含被解释变量的最广泛影响因素的ADL模型开始,逐级约化,每一步约化都需要满足各项检验标准,力求在数据信息损失最小的情况下得到包含被解释变量长期均衡关系的最简洁的ECM模型,有效避免了“伪回归”问题。这一动态建模方法已成为当今主流经济计量建模方法之一。,Tuesday,16 Dec.2008,CUFE,例7.5 运用动态建模方法估计某国私人消费和个人可支配收入之间的误差修正模型。第一步:确定私人消费和个人可支配收入的单整阶数,由例7.1知:CtI(1)和YtI(1)。第二步:建立ADL模型。取ADL模型滞后阶数为2时,运用OLS法,方程估计通过自相关、异方差、正态分布等各项检验。表明可以从滞后阶数为2的ADL模型开始对方程进行约化。,Tuesday,16 Dec.2008,CUFE,第三步:逐级约化ADL模型为最简化模型,原则是在通过各项检验标准的条件下,运用OLS法逐步略去方程中t检验值最不显著的变量。具体将式(7.33)中的Ct-2和Yt-2分别依次略去,最终得到各变量均显著的最简化模型(7.34)。可以看出,拟合方程的标准差由式(7.33)的3387.68下降为式(7.34)的3355.41,方程得到了优化。,Tuesday,16 Dec.2008,CUFE,第四步:将最简化模型应变量改写为一阶差分形式,并设定ECM项。,依据式(7.32)的推导,令ECMt=Ct-0.767*Yt,其中-0.767=0.1538/(-0.2006)。由于式(7.36)只是对式(7.35)进行了变量的等价变换,因此方程的标准差没有发生变化,均是3355.41。可以验证ECMtI(0),即Ct与Yt存在协整关系。,Tuesday,16 Dec.2008,CUFE,第五步:运用OLS法得到包含ECM项的误差修正模型。(7.37)同(7.36)相比,由于少了一个变量,方程的标准差得以减少,方程更为简洁和优化。此时,可将常数项写入均衡项,有:,式(7.38)表明Ct 和Yt 的长期均衡关系式是,Tuesday,16 Dec.2008,CUFE,小结 本章重点介绍了时间序列分析中用到的一些基本概念和方法。一.平稳性和非平稳性 一般来说,如果一个时间序列的均值和方差在任何时间保持恒定,并且两个时期t和t+k之间的协方差仅依赖于两时期之间的距离(间隔或滞后)k,而与计算这些协方差的实际时期t无关,则该时间序列是平稳的。只要这三个条件不全满足,则该时间序列是非平稳的。事实上,大多数经济时间序列是非平稳的。若一个非平稳序列Xt必须取d阶差分才变为平稳序列,则Xt是“d阶单整的”,表示为XtI(d)。,Tuesday,16 Dec.2008,CUFE,二.平稳性检验 平稳性检验的方法有自相关函数法和单位根方法两类,本章中介绍了单位根方法。单位根是表示非平稳性的另一方式,单位根方法将对非平稳性的检验转化为对单位根的检验,本章介绍的DF检验法简单实用,是目前最常用的单位根方法。DF检验按以下两步进行:第一步:用 OLS法估计 Xt=Xt-1+t,得到常规t值。第二步:检验假设 H0:=0 Ha:0 若接受原假设H0,则Xt非平稳。,Tuesday,16 Dec.2008,CUFE,三协整分析 协整分析是用于非平稳变量组成的关系式中长期均衡参数估计的技术。协整分析涉及的是一组变量,它们各自都是不平稳的,但它们同步。这种变量的同步使得这些变量之间存在长期的线性关系,因而使人们能够研究经济变量间的长期均衡关系。如果这种长期线性关系不成立,则对应的变量被称为是“非协整的”。协整的定义是:如果两时间序列YtI(d),XtI(d),并且这两个时间序列的线性组合a1Yt+a2Xt 是(d-b)阶单整的,即a1Yt+a2XtI(d-b)(db0),则Yt 和Xt被称为是(d,b)阶协整的。记为 Yt,XtCI(d,b)。,Tuesday,16 Dec.2008,CUFE,当回归方程中涉及的时间序列是非平稳时间序列时,OLS估计量不再是一致估计量,相应的常规推断程序会产生误导。这就是所谓的“伪回归”问题。可是,如果Yt 和Xt是协整的,并且均衡误差是平稳的且具有零均值,我们就可以确信,方程Yt=0+1Xt+t 将不会产生伪回归结果。因此,要避免伪回归问题,就应该在进行回归之前检验一下所涉及的变量是否协整。本章介绍了两种检验协整的方法:Engle-Granger法和Durbin-Watson法。协整分析亦可用于短期或非均衡参数的估计,按照戈兰杰代表定理,如果两变量Yt和Xt是协整的,则它们之间存在长期均衡关系。当然,在短期内,这些变量可以是不均衡的,扰动项是均衡误差t。两变量间这种短期不均衡关系的动态结构可以由误差修正模型来描述。,Tuesday,16 Dec.2008,CUFE,复习思考题1请说出平稳时间序列和非平稳时间序列的区别,并解释为什么在实证分析中确定经济时间序列的性质是十分必要的。2什么是伪回归?在回归中使用非均衡时间序列时是否必定会造成伪回归?3有人说,协整分析实质上是一种缺乏理论基础的“归纳(inductive)”方法。请对上述说法谈谈你的看法。,Tuesday,16 Dec.2008,CUFE,谢谢!Q&A,

    注意事项

    本文(计量经济学第七讲-时间序列分析.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开