欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    经典单方程计量经济学模型一元回归模型.ppt

    • 资源ID:6056514       资源大小:2.81MB        全文页数:127页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    经典单方程计量经济学模型一元回归模型.ppt

    经典单方程计量经济学模型:一元线性回归模型 The Classical Single Equation Econometric Model:Simple Linear Regression Model,本章内容,回归分析概述一元线性回归模型的基本假设一元线性回归模型的参数估计 一元线性回归模型的检验一元线性回归模型的预测实例及时间序列问题,2.1 回归分析概述(Regression Analysis),一、变量间的关系及回归分析的基本概念二、总体回归函数三、随机扰动项四、样本回归函数,一、变量间的关系及回归分析的基本概念,1、变量间的关系,确定性关系或函数关系:研究的是确定性现象非随机变量间的关系。,统计依赖或相关关系:研究的是非确定性现象随机变量间的关系。,函数关系,指某一经济变量可直接表示为其他经济变量的确定的函数,函数表达式中没有未知参数,不存在参数估计的问题。,1)某一商品的销售收入Y与单价P、销售数量Q之间的关系Y=PQ 2)某一农作物的产量Q与单位面积产量q、种植面积S之间的关系Q=q S,例如:,相关关系,指不同经济变量的变化趋势之间存在某种不确定的联系,某一或某几个经济变量的取值确定后,对应的另一经济变量的取值虽不能唯一确定,但按某种规律有一定的取值范围。,居民消费C与可支配收入Y之间的关系,可支配收入的取值确定后,消费的取值虽不能唯一确定,但有一定的取值范围,0 C Y,遵循边际消费倾向递减的规律。居民消费C与可支配收入Y之间的关系可表示为C=+Y,、为待估参数。,例如:,相关关系的表达式一般表示为含有未知参数的函数形式,需要进行参数估计。,相关关系的分类,a)按照涉及的变量的数量,单相关(一元相关),复相关(多元相关),-指两个经济变量之间存在的相关关系,-指多个经济变量之间存在的相关关系,可能是几个经济变量的某种综合效果与一个经济变量有趋势方面的联系。,相关关系的分类,b)按照相关的程度,完全相关,不完全相关,不相关,相关关系的分类,c)按照相关的性质,正相关,负相关,相关关系的分类,d)按照是否线性,线性相关,非线性相关,函数关系与相关关系的区别,确定的函数关系可以直接用于经济活动,无需分析。,不确定的相关关系,隐含着某种经济规律,是有关研究的重点,2.相关分析,研究变量之间的相关关系的形式和程度的一种统计分析方法,主要通过绘制变量之间关系的散点图和计算变量之间的相关系数进行。,绘制变量之间关系的散点图,例如:,计算变量之间的相关系数,相关系数,十九世纪末英国著名统计学家卡尔皮尔逊(Karl Pearson)度量两个变量之间的线性相关程度的简单相关系数(简称相关系数),(2-2),(2-3),或,相关系数的取值介于11之间,1.取值为负表示两变量之间存在负相关关系;2.取值为正表示两变量之间存在正相关关系;3.取值为1表示两变量之间存在完全负相关关系;4.取值为0表示两变量不相关;5.取值为1表示两变量之间存在完全正相关关系。,3.回归分析,研究不仅存在相关关系而且存在因果关系的变量之间的依存关系的一种分析理论与方法,是计量经济学的方法论基础,,主要内容,1)设定理论模型,描述变量之间的因果关系;,2)根据样本观察数据利用适当方法对模型参数进行估计,得到回归方程;,3)对回归方程中的变量、方程进行显著性检验,推求参数 的置信区间、模型的预测置信区间;,4)利用回归模型解决实际经济问题。,例如:,居民消费C与可支配收入Y:相关关系且因果关系 相关分析:研究两者之间的相关程度 回归分析:研究两者之间的具体依存关系 建立理论模型C=+Y 估计模型中的参数、,得到回归方程 进行相关检验 利用回归模型进行结构分析、经济预测、政策评价等。,4.相关分析与回归分析之间的关系,联系:,1)都是对存在相关关系的变量的统计相关关系的研究;2)都能测度线性相关程度的大小;3)都能判断线性相关关系是正相关还是负相关。,区别:,1)相关分析仅仅是从统计数据上测度变量之间的相关程度,不考虑两者之间是否存在因果关系,因而变量的地位在相 关分析中是对等的;回归分析是对变量之间的因果关系的分析,变量的地位是 不对等的,有被解释变量和解释变量之分。,2)相关分析主要关注变量之间的相关程度和性质,不关注变 量之间的具体依赖关系。回归分析在关注变量之间的相关程度和性质的同时,更关注变量 之间的具体依赖关系,因而可以深入分析变量间的依存关系,有 可能达到掌握其内在规律的目的,具有更重要的实践意义。,二、总体回归函数Population Regression Function,PRF,1、条件均值(conditional mean),例:一个假想的社区有99户家庭组成,欲研究该社区每月家庭消费支出Y与每月家庭可支配收入X的关系。即如果知道了家庭的月收入,能否预测该社区家庭的平均月消费支出水平。为达到此目的,将该99户家庭划分为组内收入差不多的10组,以分析每一收入组的家庭消费支出。,由于不确定因素的影响,对同一收入水平X,不同家庭的消费支出不完全相同;但由于调查的完备性,给定收入水平X的消费支出Y的分布是确定的,即以X的给定值为条件的Y的条件分布(Conditional distribution)是已知的。例如:P(Y=561|X=800)=1/4。因此,给定收入X的值Xi,可得消费支出Y的条件均值(conditional mean)或条件期望(conditional expectation):E(Y|X=Xi)。该例中:E(Y|X=800)=605,描出散点图发现:随着收入的增加,消费“平均地说”也在增加,且Y的条件均值均落在一根正斜率的直线上。这条直线称为总体回归线。,2、总体回归函数,在给定解释变量Xi条件下被解释变量Yi的期望轨迹称为总体回归线(population regression line),或更一般地称为总体回归曲线(population regression curve)。相应的函数称为(双变量)总体回归函数(population regression function,PRF)。,含义:回归函数(PRF)说明被解释变量Y的平均状态(总体条件期望)随解释变量X变化的规律。函数形式:可以是线性或非线性的。例中,将居民消费支出看成是其可支配收入的线性函数时:,为线性函数。其中,0,1是未知参数,称为回归系数(regression coefficients)。,三、随机扰动项Stochastic Disturbance,总体回归函数说明在给定的收入水平Xi下,该社区家庭平均的消费支出水平。但对某一个别的家庭,其消费支出可能与该平均水平有偏差。称为观察值围绕它的期望值的离差(deviation),是一个不可观测的随机变量,又称为随机干扰项(stochastic disturbance)或随机误差项(stochastic error)。,例中,给定收入水平Xi,个别家庭的支出可表示为两部分之和:该收入水平下所有家庭的平均消费支出E(Y|Xi),称为系统性(systematic)或确定性(deterministic)部分;其他随机或非确定性(nonsystematic)部分i。,称为总体回归函数(PRF)的随机设定形式。表明被解释变量除了受解释变量的系统性影响外,还受其他因素的随机性影响。由于方程中引入了随机项,成为计量经济学模型,因此也称为总体回归模型(PRM)。,引入随机误差项的原因:代表未知的影响因素;代表残缺的数据;代表众多细小影响因素代表数据观测误差;代表模型设定误差;代表变量的内在随机性。,四、样本回归函数Sample Regression Function,SRF,1、样本回归函数,问题:能否从一次抽样中获得总体的近似信息?如果可以,如何从抽样中获得总体的近似信息?在例的总体中有如下一个样本,能否从该样本估计总体回归函数?,回答:能,该样本的散点图(scatter diagram):,画一条直线以尽好地拟合该散点图,由于样本取自总体,可以该直线近似地代表总体回归线。该直线称为样本回归线(sample regression lines)。,样本回归线的函数形式为:,称为样本回归函数(sample regression function,SRF)。,注意:这里将样本回归线看成总体回归线的近似替代,则,2、样本回归模型,样本回归函数的随机形式:,由于方程中引入了随机项,成为计量经济模型,因此也称为样本回归模型(sample regression model)。,回归分析的主要目的:根据样本回归函数SRF,估计总体回归函数PRF。,2.2 一元线性回归模型的基本假设(Assumptions of Simple Linear Regression Model),一、关于模型设定的假设 二、关于解释变量的假设 三、关于随机项的假设,说明,为保证参数估计量具有良好的性质,通常对模型提出若干基本假设。实际上这些假设与所采用的估计方法紧密相关。下面的假设主要是针对采用普通最小二乘法(Ordinary Least Squares,OLS)估计而提出的。所以,在有些教科书中称为“The Assumption Underlying the Method of Least Squares”。,1、对模型设定的假设,假设1:回归模型是正确设定的。,当假设1满足时,称为模型没有设定偏误,否则就会出现模型的设定偏误。,2、关于解释变量的假设,假设2:解释变量X是确定型变量,不是随机变量,在重复抽样中取固定值。假设3:解释变量X在所抽取的样本中具有变异性,而且随着样本容量的无限增加,解释变量X的样本方差趋于一个非零的有限常数。,3、关于随机项的假设,假设4:随机误差项具有给定X条件下的零均值、同方差以及不序列相关性。,假设5:随机误差项与解释变量之间不相关。,假设6:随机误差项服从零均值、同方差的正态分布。,2.3 一元线性回归模型的参数估计(Estimation of Simple Linear Regression Model),一、参数的普通最小二乘估计(OLS)二、参数估计的最大或然法(ML)三、最小二乘估计量的性质 四、参数估计量的概率分布及随机干 扰项方差的估计,一、参数的普通最小二乘估计(OLS),1、最小二乘原理,根据被解释变量的所有观测值与估计值之差的平方和最小的原则求得参数估计量。,为什么取平方和?,2、正规方程组,该关于参数估计量的线性方程组称为正规方程组(normal equations)。,3、参数估计量,求解正规方程组得到结构参数的普通最小二乘估计量(ordinary least squares estimators)及其离差形式:,分布参数的普通最小二乘估计量,4、“估计量”(estimator)和“估计值”(estimate)的区别,如果给出的参数估计结果是由一个具体样本资料计算出来的,它是一个“估计值”,或者“点估计”,是参数估计量的一个具体数值;如果把上式看成参数估计的一个表达式,那么,则是Yi的函数,而Yi是随机变量,所以参数估计也是随机变量,在这个角度上,称之为“估计量”。,二、参数估计的最大似然法(ML),1、最大似然法,最大似然法(Maximum Likelihood,ML),也称最大或然法,是不同于最小二乘法的另一种参数估计方法,是从最大或然原理出发发展起来的其它估计方法的基础。基本原理:当从模型总体随机抽取n组样本观测值后,最合理的参数估计量应该使得从模型中抽取该n组样本观测值的概率最大。ML必须已知随机项的分布。,2、估计步骤,Yi的分布,Yi的概率函数,Y的所有样本观测值的联合概率似然函数,对数似然函数,对数似然函数极大化的一阶条件,结构参数的ML估计量,3、讨论,在满足一系列基本假设的情况下,模型结构参数的最大似然估计量与普通最小二乘估计量是相同的。但是,分布参数的估计结果不同。,三、最小二乘估计量的性质,1、概述,当模型参数估计出后,需考虑参数估计值的精度,即是否能代表总体参数的真值,或者说需考察参数估计量的统计性质。准则:线性性(linear),即它是否是另一随机变量的线性函数;无偏性(unbiased),即它的均值或期望值是否等于总体的真实值;有效性(efficient),即它是否在所有线性无偏估计量中具有最小方差。这三个准则也称作估计量的小样本性质。拥有这类性质的估计量称为最佳线性无偏估计量(best liner unbiased estimator,BLUE)。,当不满足小样本性质时,需进一步考察估计量的大样本或渐近性质(asymptotic properties):渐近无偏性,即样本容量趋于无穷大时,是否它的均值序列趋于总体真值;一致性,即样本容量趋于无穷大时,它是否依概率收敛于总体的真值;渐近有效性,即样本容量趋于无穷大时,是否它在所有的一致估计量中具有最小的渐近方差。,2、高斯马尔可夫定理(Gauss-Markov theorem),在给定经典线性回归的假定下,最小二乘估计量是具有最小方差的线性无偏估计量。下面分别对最小二乘估计量的线性性、无偏性和有效性进行证明,作为不熟悉的同学的自学内容。,证:,易知,故,同样地,容易得出,(2)证明最小方差性,其中,ci=ki+di,di为不全为零的常数则容易证明,由于最小二乘估计量拥有一个“好”的估计量所应具备的小样本特性,它自然也拥有大样本特性。,四、参数估计量的概率分布及随机干扰项方差的估计,1、参数估计量的概率分布,2、随机误差项的方差2的估计,2又称为总体方差。由于随机项i不可观测,只能从i的估计残差ei出发,对总体方差进行估计。,可以证明,2的最小二乘估计量为:,它是关于2的无偏估计量。,在最大或然估计法中,求解似然方程:,2的最大或然估计量不具无偏性,但却具有一致性。,2.4 一元线性回归模型的统计检验Statistical Test of Simple Linear Regression Model,一、拟合优度检验 二、变量的显著性检验 三、参数的置信区间,说 明,回归分析是要通过样本所估计的参数来代替总体的真实参数,或者说是用样本回归线代替总体回归线。尽管从统计性质上已知,如果有足够多的重复 抽样,参数的估计值的期望(均值)就等于其总体的参数真值,但在一次抽样中,估计值不一定就等于该真值。那么,在一次抽样中,参数的估计值与真值的差异有多大,是否显著,这就需要进一步进行统计检验。主要包括拟合优度检验、变量的显著性检验及参数的区间估计。,一、拟合优度检验Goodness of Fit,Coefficient of Determination,1、定义,拟合优度检验:对样本回归直线与样本观测值 之间拟合程度的检验。,2、总离差平方和的分解,Y的i个观测值与样本均值的离差,由回归直线解释的部分,回归直线不能解释的部分,离差分解为两部分之和,对于所有样本点,则需考虑离差的平方和:,记,总体平方和(Total Sum of Squares),回归平方和(Explained Sum of Squares),残差平方和(Residual Sum of Squares),TSS=ESS+RSS,Y的观测值围绕其均值的总离差(total variation)可分解为两部分:一部分来自回归线(ESS),另一部分则来自随机势力(RSS)。,在给定样本中,TSS不变,如果实际观测点离样本回归线越近,则ESS在TSS中占的比重越大,因此 拟合优度:回归平方和ESS/Y的总离差TSS,3、可决系数R2统计量,是一个非负的统计量。取值范围:0,1越接近1,说明实际观测点离回归线越近,拟合优度越高。随着抽样的不同而不同。为此,对可决系数的统计可靠性也应进行检验,这将在第3章中进行。,二、变量的显著性检验 Testing Significance of Variable,说明,在一元线性模型中,变量的显著性检验就是判断X是否对Y具有显著的线性性影响。变量的显著性检验所应用的方法是数理统计学中的假设检验。通过检验变量的参数真值是否为零来实现显著性检验。,1、假设检验(Hypothesis Testing),所谓假设检验,就是事先对总体参数或总体分布形式作出一个假设,然后利用样本信息来判断原假设是否合理,即判断样本信息与原假设是否有显著差异,从而决定是否接受或否定原假设。假设检验采用的逻辑推理方法是反证法。先假定原假设正确,然后根据样本信息,观察由此假设而导致的结果是否合理,从而判断是否接受原假设。判断结果合理与否,是基于“小概率事件不易发生”这一原理的。,2、变量的显著性检验t检验,用2的估计量代替,构造t统计量,对总体参数提出假设:H0:1=0,H1:10,由样本计算t统计量值;给定显著性水平(level of significance),查t分布表得临界值(critical value)t/2(n-2);比较,判断:若|t|t/2(n-2),则以(1)的置信度(confidence coefficient)拒绝H0,接受H1;若|t|t/2(n-2),则以(1)的置信度不拒绝H0。自学教材p48例题,学会检验的全过程。,3、关于常数项的显著性检验,T检验同样可以进行。,一般不以t检验决定常数项是否保留在模型中,而是从经济意义方面分析回归线是否应该通过原点。,三、参数 的置信区间Confidence Interval of Parameter,1、概念,回归分析希望通过样本得到的参数估计量能够代替总体参数。假设检验可以通过一次抽样的结果检验总体参数可能的假设值的范围(例如是否为零),但它并没有指出在一次抽样中样本参数值到底离总体参数的真值有多“近”。要判断样本参数的估计值在多大程度上“近似”地替代总体参数的真值,需要通过构造一个以样本参数的估计值为中心的“区间”,来考察它以多大的可能性(概率)包含着真实的参数值。这种方法就是参数检验的置信区间估计。,如果存在这样一个区间,称之为置信区间;1-称为置信系数(置信度)(confidence coefficient),称为显著性水平;置信区间的端点称为置信限(confidence limit)。,2、一元线性模型中i 的置信区间,T分布为双尾分布,(1-)的置信度下,i的置信区间是,在上述收入-消费支出例题中,如果给定=0.01,查表得:,由于,于是,1、0的置信区间分别为:(0.6056,0.7344)(-6.719,291.52),显然,在该例题中,我们对结果的正确陈述应该是:边际消费倾向1是以99%的置信度处于以0.670为中心的区间(0.6056,0.7344)中。回答:边际消费倾向等于0.670的置信度是多少?边际消费倾向以100%的置信度处于什么区间?,由于置信区间一定程度地给出了样本参数估计值与总体参数真值的“接近”程度,因此置信区间越小越好。要缩小置信区间,需要增大样本容量n。因为在同样的置信水平下,n越大,t分布表中的临界值越小;同时,增大样本容量,还可使样本参数估计量的标准差减小;提高模型的拟合优度。因为样本参数估计量的标准差与残差平方和呈正比,模型拟合优度越高,残差平方和越小。,四、Eviews实验操作,例2-1-3家庭可支配收入与消费支出,操作步骤,1、建立工作文件e2132、输入和编辑数据(建数据组),3、画出Y和X之间的散点图,4、建立一元回归模型,点击View中的Representation可得到回归表达式。点击按钮栏中的Resids,可得残差值(Residual)、实际值(Actual)、拟合值(Fitted)的图形。,5、拟合优度检验:可决系数,越接近1,模型的拟合效果越好。,6、变量显著性检验:在Eviews中可以直接判断是否拒绝H0,是用t检验量对应的P值作判断,在给定的检验水平下,若P,则拒绝H0,反之则不能拒绝H0。,常数项的检验:P=0.01250.05拒绝常数项为0的假设。解释变量系数检验:P=0.00000.01拒绝解释变量系数为0的假设。,参数估计与检验结果的表述,以例2-3-1,,可按规范格式将分析结果表述为,第一行是样本回归函数;,第二行是对应参数估计值的t 统计值,第三行是模型的拟合优度,(3.204),(34.916),2.5 一元线性回归分析的应用:预测问题,一、预测值条件均值或个值的一个无偏估计二、总体条件均值与个值预测值的置信区间,对于一元线性回归模型,给定样本以外的解释变量的观测值X0,可以得到被解释变量的预测值0,可以此作为其条件均值E(Y|X=X0)或个别值Y0的一个近似估计。,严格地说,这只是被解释变量的预测值的估计值,而不是预测值。原因:参数估计量不确定;随机项的影响。,说 明,一、预测值是条件均值或个值的一个无偏估计,1、0是条件均值E(Y|X=X0)的无偏估计,2、0是个值Y0的无偏估计,二、总体条件均值与个值预测值的置信区间,在1-的置信度下,总体均值E(Y|X0)的置信区间为,1、总体均值预测值的置信区间,2、总体个值预测值的预测区间,在1-的置信度下,Y0的置信区间为,3、例题收入-消费支出,样本回归函数为,则在 X0=1000处,0=142.4+0.6701000=812.4,因此,总体均值E(Y|X=1000)的95%的置信区间为:(812.42.30627.6,812.4+2.30627.6)(748.8,875.9),同样地,对于Y在X=1000的个体值,其95%的置信区间为:(812.4-2.30659.1,812.4+2.30659.1)(676.1,948.7),2.6 实例及时间序列问题,一、2006年中国城镇居民人均消费支出数据,样本回归函数,(1.047),(31.395),经济意义检验:,拟合优度检验:,变量显著性检验:,双击Range,用Eviews软件计算预测值,双击yf打开此数列,查看预测值,预测评价指标:均方根误差(RMSE)平均绝对误差(MAE)平均绝对百分误差(MAPE)希尔不等系数(TIC)偏差率(BP)方差率(VP)协变率(CP),预测评价,均方根误差(RMSE),平均绝对误差(MAE)绝对误差比较指标,取值大小受量纲的影响,不能形成统一的评价指标。平均绝对百分误差(MAPE)希尔不等系数(TIC)相对比较指标,可以形成一致的评价标准。MAPE的取值在05之间说明预测精度极高,在10以内说明预测精度高;TIC的取值范围是01之间,取值越小越好。偏差率(BP)方差率(VP)协变率(CP)BP+VP+CP=1,BP,VP应尽可能小,CP尽可能大,在1-的置信度下,总体均值E(Y|X0)的置信区间为,1、总体均值预测值的置信区间,2、总体个值预测值的预测区间,在1-的置信度下,Y0的置信区间为,t/2(n-2):可查分布表得到,二、中国居民总量消费函数:时间序列数据模型,1、计算生成新的变量,2、回归模型、检验、预测,三、时间序列问题,从理论上讲,经典线性回归模型理论是以随机抽样的截面数据或者平稳的时间序列数据为基础的。对于非平稳时间序列数据,存在理论方法方面的障碍“伪回归问题”。如何处理?本书第8章将专门讨论。在27章中大量采用非平稳时间序列数据作为实例,暂时不考虑理论方法方面的障碍。,

    注意事项

    本文(经典单方程计量经济学模型一元回归模型.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开