材料表征教学资料introdu.ppt
材料表征,吴迪南京大学材料科学与工程系83621215,2,提纲,课程简介 材料与粒子的相互作用 衍射 电子显微 扫描力显微 表面分析手段,3,第一章 课程简介,材料表征课程介绍表征材料微观结构和化学组成的物理方法,包括X射线衍射术、扫描和透射电子显微术、扫描力显微术、X射线能谱、Auger电子能谱、光电子能谱、二次离子质谱以及Raman和红外光谱技术。课程强调对各种表征技术基本原理的掌握和应用。课程共讲课5260课时,学期末安排810课时有关X射线衍射、扫描和透射电子显微、X射线光电子能谱等仪器的操作演示和实践。,4,第二章 射线与物质的相互作用,穿透深度和分析深度辐射损伤,5,第三章 衍射,X射线和电子衍射简介可见光衍射的回顾衍射几何劳埃方程和布拉格定律X射线衍射方法粉末衍射傅立叶变换和衍射衍射强度和结构因子衍射角宽度:尺寸效应和晶格畸变电子衍射高分辨X射线衍射:rocking curve和reciprocal space mapping,6,第四章 扫描力显微术,扫描隧道显微术(STM)原子力显微术(AFM)其它扫描力显微术,7,第五章 扫描电子显微术,扫描电镜简介电子枪电子的散射:二次电子和背散射电子光路电子光学简介成像、放大倍数和衬度工作距离、分辨率和景深成像质量及其影响因素样品制备环境扫描电镜(ESEM)X射线能量发散光谱(EDS)X射线波长发散光谱(WDS)背散射电子衍射(EBSD),8,第六章 透射电子显微术,透射电镜的组成衬度和成像原理透射电镜的基本操作样品制备扫描透射显微(STEM)电子能量损失谱(EELS),9,第七章 表面分析技术,Auger电子能谱(AES)X射线光电子能谱(XPS)低能电子衍射(LEED)高能反射式电子衍射(RHEED)二次离子质谱(SIMS),10,第八章 Raman与红外光谱,红外吸收的基本概念影响吸收光谱的因素红外谱仪红外光谱样品制备红外光谱应用举例光散射现象与Raman光谱的基本原理Raman散射的经典理论及量子理论光谱选择定则发光(荧光)的抑制和消除晶格动力学基础Raman光谱的实验装置Raman光谱应用举例,11,课程目的,preparation,structure/composition,properties,performance,To study synthesis/preparation,structure/composition,properties,performance,and the relationship among these factors.,this course,It is certainly evident that the properties for which materials are selected for a particular application depends on the microstructure which,in itself,can be considered to extend to the atomic level.,12,How to?,The interaction of electromagnetic radiation with crystalline solids is now understood in considerable detail so that it can be exploited to provide the necessary information.,To characterize a microstructure it is necessary to perturb the material by interacting in some way with it.,13,photon,electron,neutron/proton,ions/atoms,infrared radiation,visible light,ultraviolet radiation,X-ray radiation,secondary electrons,transmitted electrons,back-scattered electrons,absorption,vibration,optic microscopy,surface electron distribution,laser:strong photo source,makes detection of weak signals possible,X-ray diffraction/absorption,SEM,TEM,energy disperse spectroscopy,14,Classification of materials,Materials have been classified in various ways,but perhaps the simplest classification divides into two categories.,One based on the nature of the material;,NatureCeramicsGlassesMetals and AlloysOther Inorganic MaterialsPolymersElastomersFibersComposite materialsWoodOther biological materials,ApplicationsIndustrial materialsElectrical materialsElectronic materialsSuperconducting materialsMagnetic materialsMaterials for energy applicationsOptical MaterialsBiomedical materialsDental materialsBuilding materials,the other on applications.,15,Ceramics,Ceramic engine offers advantages in terms of fuel economy,efficiency,weight savings and performance.,16,Ceramics,superconductor,17,Titanium carbide(TiC)ceramic coatings,which possess excellent resistance to wear,oxidation and corrosion,as well as having other desirable properties,greatly extends the use of graphites parts.,Ceramics,18,Metals and alloys,19,Shape memory alloys,Metals and alloys,20,Glasses,21,The word polymer literally means many parts”:a long chain of covalent-bonded atoms,Polymers,plastics and elastomers,22,Polymers,Usage:car parts,food storage,electronic packaging,optical components,and adhesives,23,glass-fiber/epoxy composite,snowboard made of composite materials,Composites,24,Microstructures,Bonds equilibrium distance r0Bonds in materials fall into 5 categories.ionic bonds covalent bonds metallic bonds van de Waals force hydrogen bonds,25,Microstructures,LatticeUsing the basic symmetry elements of reflection,inversion,rotation and rotoinversion,14 Bravais lattices exist.,26,Unit cell,27,Unit cell,The choice of unit cell is nonexclusive.,28,Lattice parameters,29,7 types of parallelepiped,30,4 types of lattices,31,14 Bravais lattices I,32,14 Bravais lattices II,33,Crystalline planes,34,Crystalline planes,35,Crystalline planes,36,Crystalline planes,37,Grain boundaries,38,edge dislocations,Dislocations,screw dislocations,39,Point defects,40,SEM image of a device region on an IC chip,Examples,41,cross-section TEM images of an IC chip,Examples,42,oxygen,aluminium,titanium,energy filtered TEM image,Examples,43,ZnO nanotubular structure,Examples,44,ZnO nanotubular structure,Examples,45,ZnO nanorod-nanoribbon junctions;the scale bar is 1 m.,Examples,46,ZnO nanorod-nanoribbon junctions;the scale bar is 1 m.,Examples,47,ZnO nanorod-nanoribbon junctions,Examples,48,The End,