3.2立体几何中的向量方法(三).ppt
第三章 空间向量与立体几何,3.2 立体几何中的向量方法(三),一、复习引入,用空间向量解决立体几何问题的“三步曲”。,(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;,(2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;,(3)把向量的运算结果“翻译”成相应的几何意义。,(化为向量问题),(进行向量运算),(回到图形),向量的有关知识:,两向量数量积的定义:ab=|a|b|cosa,b,两向量夹角公式:cos a,b=,直线的方向向量:与直线平行的非零向量,平面的法向量:与平面垂直的向量,练习 如图,60的二面角的棱上有A、B两点,直线AC、BD分别在这个二面角的两个半平面内,且都垂直AB,已知AB4,AC6,BD8,求CD的长.,例1:如图3,甲站在水库底面上的点A处,乙站在水坝斜面上的点B处。从A,B到直线(库底与水坝的交线)的距离AC和BD分别为 和,CD的长为,AB的长为。求库底与水坝所成二面角的余弦值。,解:如图,,化为向量问题,根据向量的加法法则,进行向量运算,于是,得,设向量 与 的夹角为,就是库底与水坝所成的二面角。,因此,所以,回到图形问题,库底与水坝所成二面角的余弦值为,例1:如图3,甲站在水库底面上的点A处,乙站在水坝斜面上的点B处。从A,B到直线(库底与水坝的交线)的距离AC和BD分别为 和,CD的长为,AB的长为。求库底与水坝所成二面角的余弦值。,思考:,(1)本题中如果夹角 可以测出,而AB未知,其他条件不变,可以计算出AB的长吗?,分析:,可算出 AB 的长。,(2)如果已知一个四棱柱的各棱长和一条对角线的长,并且以同一顶点为端点的各棱间的夹角都相等,那么可以确定各棱之间夹角的余弦值吗?,分析:如图,设以顶点 为端点的对角线长为,三条棱长分别为 各棱间夹角为。,(3)如果已知一个四棱柱的各棱长都等于,并且以某一顶点为端点的各棱间的夹角都等于,那么可以确定这个四棱柱相邻两个夹角的余弦值吗?,A1,B1,C1,D1,A,B,C,D,分析:,二面角,平面角,向量的夹角,回归图形,解:如图,在平面 AB1 内过 A1 作 A1EAB 于点 E,,E,F,在平面 AC 内作 CFAB 于 F。,可以确定这个四棱柱相邻两个夹角的余弦值。,空间“夹角”问题,1.异面直线所成角,l,m,l,m,若两直线 所成的角为,则,例2,解:以点C为坐标原点建立空间直角坐标系 如图所示,设 则:,所以:,所以 与 所成角的余弦值为,练习:,在长方体 中,,二面角的平面角,方向向量法 将二面角转化为二面角的两个面的方向向量(在二面角的面内且垂直于二面角的棱)的夹角。如图,设二面角 的大小为其中AB,D,C,L,B,A,注意法向量的方向:同进同出,二面角等于法向量夹角的补角;一进一出,二面角等于法向量夹角,将二面角转化为二面角的两个面的法向量的夹角。如图,向量,则二面角 的大小,若二面角 的大小为,则,法向量法,二面角的平面角,例2 正三棱柱 中,D是AC的中点,当 时,求二面角 的余弦值。,故,则可设=1,则B(0,1,0),作 于E,于F,则 即为二面角 的大小,在 中,即E分有向线段 的比为,由于 且,所以,在 中,同理可求,即二面角 的余弦值为,解法二:同法一,以C为原点建立空间直角坐标系 C-xyz,在坐标平面yoz中,设面 的一个法向量为,同法一,可求 B(0,1,0),由 得,解得,所以,可取,即二面角 的余弦值为,方向朝面外,方向朝面内,属于“一进一出”的情况,二面角等于法向量夹角,2.线面角,2.线面角,l,设直线l的方向向量为,平面 的法向量为,且直线 与平面 所成的角为(),则,