高二数学选修1、2-1-1椭圆及其标准方程.ppt
课程目标1双基目标(1)掌握椭圆的定义,椭圆标准方程的两种形式及其推导过程(2)能够根据条件确定椭圆的标准方程,会运用待定系数法求椭圆的标准方程(3)掌握椭圆的几何性质,掌握标准方程中的a、b、c、e的几何意义,以及a、b、c、e之间的相互关系,(4)了解双曲线的定义,并能根据双曲线定义恰当地选择坐标系,建立及推导双曲线的标准方程(5)会用待定系数法求双曲线标准方程中的a、b、c,能根据条件确定双曲线的标准方程(6)使学生了解双曲线的几何性质,能够运用双曲线的标准方程讨论它的几何性质,能够确定双曲线的形状特征(7)了解抛物线的定义、抛物线的标准方程及其推导过程,能根据条件确定抛物线的标准方程(8)了解抛物线的几何性质,能运用抛物线的标准方程推导出它的几何性质,同时掌握抛物线的简单画法,(9)通过抛物线四种不同形式标准方程的对比,培养学生分析归纳能力(10)通过根据圆锥曲线的标准方程研究其几何性质的讨论,加深曲线与方程关系的理解,同时提高分析问题和解决问题的能力,培养学生的数形结合、方程思想及等价转化思想(11)能够利用圆锥曲线的有关知识解决与圆锥曲线有关的简单实际应用问题,2情感目标通过对椭圆、双曲线、抛物线概念的引入教学,培养学生的观察能力和探索能力,通过画圆锥曲线的几何图形,让学生感知几何图形曲线美、简洁美、对称美,培养学生学习数学的兴趣,通过圆锥曲线的统一性的研究,对学生进行运动、变化、对立、统一的辩证唯物主义思想教育,重点难点本章重点:椭圆、双曲线、抛物线的定义、方程和几何性质,在生产和科学技术中有着广泛的应用,也是今后进一步学习数学的基础椭圆、双曲线、抛物线的定义、方程、几何性质,以及坐标法是这一章的重点,本章难点:坐标法是借助坐标系,以代数中数与式的知识为基础来研究几何问题的一种数学方法因此,学习这一章时需要一定的代数知识作为基础特别是对数式变形和解方程组的能力要求较高例如,在求椭圆和双曲线的标准方程时,会遇到比较复杂的根式化简问题,在解某些题目时,还会遇到由两个二元二次方程组成的方程组的问题等等,这都是本章难点,学法探究圆锥曲线可以看成是符合某种条件的点的轨迹,在本章中通过坐标法,运用代数工具研究曲线问题体现得最突出,它把数学的两个基本对象形与数有机地联系起来,在学习中,要深刻领会数形结合这一重要数学方法圆锥曲线的定义是解决圆锥曲线问题的出发点,要明确基本量a、b、c、e的相互关系、几何意义及一些概念的联系,圆锥曲线中最值求法有两种:(1)几何法:若题目中条件与结论能明显体现几何特征及意义,则考虑利用图形性质来解决(2)代数法:若题目的条件和结论能体现明确的函数关系,则可建立目标函数,再求这个函数的最值定点与定值问题的处理方法:(1)从特殊入手,求出定点或定值,再证明这个点(值)与变量无关(2)直接推理、计算,并在计算过程消去变量,从而得到定点(定值),21椭 圆,1知识与技能掌握椭圆的定义,会推导椭圆的标准方程2过程与方法会用待定系数法求椭圆的标准方程,本节重点:椭圆的定义和椭圆标准方程的两种形式本节难点:椭圆标准方程的建立和推导1对于椭圆定义的理解,要抓住椭圆上的点所要满足的条件,即椭圆上点的几何性质,可以对比圆的定义来理解2在理解椭圆的定义时,要注意到对“常数”的限定,即常数要大于|F1F2|.这样就能避免忽略两种特殊情况,即:当常数等于|F1F2|时轨迹是一条线段;当常数小于|F1F2|时点不存在,3观察椭圆的图形,发现椭圆有两条互相垂直的对称轴,以这两条对称轴作为坐标系的两轴建立平面直角坐标系,在方程的推导过程中遇到了无理方程的化简,这类方程的化简方法:(1)方程中只有一个根式时,需将它单独留在方程的一侧,把其它项移到另一侧;(2)方程中有两个根式时,需将它们放在方程的两侧,并使其中一侧只有一个根式,1对椭圆的定义要正确理解、熟练运用,解决过焦点的问题时,要结合图形看能否运用定义2用待定系数法来求椭圆的标准方程时,要“先定型,再定量”,不能确定焦点的位置,可进行分类讨论或设为mx2ny21(m0,n0)的形式,1平面内与两个定点F1、F2的距离之和等于定长(大于|F1F2|)的点的轨迹叫做 这两个定点F1、F2叫做椭圆的,两焦点的距离|F1F2|叫做椭圆的 2在椭圆定义中,条件2a|F1F2|不应忽视,若2a|F1F2|,则这样的点不存在;若2a|F1F2|,则动点的轨迹是,椭圆,焦点,焦距,线段,例1求适合下列条件的椭圆的标准方程:(1)两个焦点坐标分别是(3,0)、(3,0),椭圆经过点(5,0);(2)两个焦点坐标分别是(0,5)、(0,5),椭圆上一点P到两焦点的距离和为26.,例2根据下列条件,求椭圆的标准方程(1)坐标轴为对称轴,并且经过两点A(0,2),B.(2)经过点(2,3)且与椭圆9x24y236有共同的焦点,点评1.求椭圆方程时,若没有指明焦点位置,一般可设所求方程为 1(m0,n0)再根据条件确定m、n的值2当椭圆过两定点时,常设椭圆方程为Ax2By21(A0,B0)将点的坐标代入解方程组求得系数,例3已知圆A:(x3)2y2100,圆A内一定点B(3,0),圆P过B且与圆A内切,求圆心P的轨迹方程分析根据两圆内切的特点,得出|PA|PB|10,由于A点的坐标为(3,0),B点的坐标为(3,0),所以点P的轨迹方程是以A、B为焦点的椭圆的标准方程,这就把求点P的轨迹方程的问题转化成了求a2、b2的问题,解析设圆P的半径为r,又圆P过点B,|PB|r,又圆P与圆A内切,圆A的半径为10.两圆的圆心距|PA|10r,即|PA|PB|10(大于|AB|)点P的轨迹是以A、B为焦点的椭圆2a10,2c|AB|6,a5,c3.b2a2c225916.,点评在求动点的轨迹方程时,要对动点的运动规律仔细分析,去伪存真,当发现有动点到两定点的距离之和为定值时,要马上和椭圆的定义进行联系若符合椭圆的定义,即可直接写出对应的椭圆方程,这种方法也叫定义法求轨迹方程,已知F1、F2是两点,|F1F2|8,动点M满足|MF1|MF2|10,则点M的轨迹是_动点M满足|MF1|MF2|8,则点M的轨迹是_答案以F1、F2为焦点,焦距为8的椭圆线段F1F2,解析因为|F1F2|8且动点M满足|MF1|MF2|108|F1F2|,由椭圆定义知,动点M的轨迹是以F1、F2为焦点,焦距为8的椭圆其方程为因为|MF1|MF2|8|F1F2|,所以动点M的轨迹是线段F1F2.,例4如图所示,已知点P是椭圆1上的点,F1和F2是焦点,且F1PF230,求F1PF2的面积,已知椭圆 1上一点P,F1、F2为椭圆的焦点,若F1PF2,求F1PF2的面积,解析由椭圆的定义,有|PF1|PF2|2a,而在F1PF2中,由余弦定理有|PF1|2|PF2|22|PF1|PF2|cos|F1F2|24c2,(|PF1|PF2|)22|PF1|PF2|2|PF1|PF2|cos4c2,即4a24c22|PF1|PF2|(1cos),点评椭圆上一点P与两焦点F1、F2构成的三角形PF1F2我们通常称其为焦点三角形,在这个三角形中,既可运用到椭圆定义,又能用到正、余弦定理上述解答过程中还运用了整体思想直接求出|PF1|PF2|,没有单独求|PF1|、|PF2|,以减少运算量,例5设P为椭圆1上任意一点,F1为它的一个焦点,求|PF1|的最大值和最小值解析设F2为椭圆的另一焦点,则由椭圆定义得:|PF1|PF2|2a,|PF1|PF2|2c,2c|PF1|PF2|2c,2a2c2|PF1|2a2c,即ac|PF1|ac|PF1|的最大值为ac,最小值为ac.,点评椭圆上到某一焦点的最远点与最近点分别是长轴的两个端点,应掌握这一性质,已知椭圆的焦点F1、F2在x轴上,它与y轴的一个交点为P,且PF1F2为正三角形,且焦点到椭圆上的点的最短距离为,则椭圆的方程为_,辨析上述解法只注意了焦点在y轴上,而没有考虑到m20且(m1)20,这是经常出现的一种错误,一定要避免,辨析由a2(m1)2及b2m2,应得a|m1|及b|m|,m1与m不一定是正值,上述解法误认为m1与m是正值而导致错误,一、选择题1(2009陕西文,7)“mn0”是“方程mx2ny21表示焦点在y轴上的椭圆”的()A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必要条件答案C,2已知椭圆1上一点P到其一个焦点的距离为3,则点P到另一个焦点的距离为()A2 B3 C5 D7答案D解析设椭圆的两个焦点分别为F1、F2,由椭圆定义知,|PF1|PF2|2a10,点P到另一个焦点的距离为7.,答案A,4椭圆 1的焦点坐标是()A(5,0)B(0,5)C(0,12)D(12,0)答案C解析椭圆方程为 1,椭圆焦点在y轴上,又a13,b5,c12,椭圆焦点坐标为(0,12),二、填空题5(2009北京文,13)椭圆1的焦点为F1,F2,点P在椭圆上若|PF1|4,则|PF2|_;F1PF2的大小为_答案2120,6椭圆1的焦距是2,则m的值为_答案5或3解析由题意得2c2,c1,当焦点为x轴上时,a2m,b24,c2m41,m5,当焦点在y轴上时,a24,b2m,c24m1,m3.,