欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    附录I截面的几何性质.ppt

    • 资源ID:6033027       资源大小:1,009.50KB        全文页数:47页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    附录I截面的几何性质.ppt

    薄壁圆筒剪应力 大小:,A0:平均半径所作圆的面积。,第3章 杆件的应力与强度,圆轴扭转时的应力与强度,切应力沿着壁厚是均匀分布的。,剪应力互等定理,在两个互相垂直的平面上,剪应力必然成对存在,且数值相等,两者都垂直于两个平面的交线,方向则共同指向或共同背离这一交线,这就是剪应力互等定理。,在弹性范围内加载时,剪应力与剪应变之间存在成正比:,剪切胡克定律,第3章 杆件的应力与强度,应用平衡方法可以确定圆杆扭转时横截面上的内力分量扭矩,但是不能确定横截面上各点剪应力的大小。为了确定横截面上各点的剪应力,在确定了扭矩后,还必须知道横截面上的剪应力是怎样分布的。,圆轴扭转时横截面上的剪应力分析,应力分布,应力公式,变 形,应变分布,第3章 杆件的应力与强度,最大剪应力,Wp 扭转截面系数,圆轴扭转时横截面上的剪应力表达式,第3章 杆件的应力与强度,受扭圆轴的强度设计准则,为了保证圆轴扭转时安全可靠地工作,必须将圆轴横截面上的最大剪应力max限制在一定的数值以下,即:,圆轴扭转时强度设计,第3章 杆件的应力与强度,注意事项,max 是指圆轴所有横截面上最大剪应力中的最大者,对于等截面圆轴最大剪应力发生在扭矩最大的横截面上的边缘各点;,对于变截面圆轴,如阶梯轴,最大剪应力不一定发生在扭矩最大的截面,这时需要根据扭矩Mx和相应扭转截面模量WP数值综合考虑才能确定。,第3章 杆件的应力与强度,圆轴扭转时的应力与强度,附录截面的几何性质,研究杆件的应力与变形,研究失效问题以及强度、刚度、稳定性问题,都要涉及到与截面图形的几何形状和尺寸有关的量。这些量统称为截面的几何性质,主要包括:形心、静矩、惯性矩、惯性半径、极惯性矩、惯性积、形心主轴和形心主矩等。,附录截面的几何性质,附录截面的几何性质,静矩、形心及其相互关系,惯性矩、极惯性矩、惯性积、惯性半径,惯性矩与惯性积的平行移轴定理,惯性矩与惯性积的转轴定理,主轴与形心主轴、主惯性矩与形心主惯性矩,组合图形形心、形心主轴和形心主矩的计算,图形A对于 y 轴的静矩,同理图形A对于 z 轴的静矩,静矩、形心及其相互关系,附录截面的几何性质,微面积dA对z轴的静矩,所以,2、截面对形心轴的静矩为零;,3、若截面对某轴的静矩为零,则该轴必为形心轴。,1、截面图形的静矩是对某一坐标轴定义的,所以静矩与坐标轴有关;,附录截面的几何性质,静矩、形心及其相互关系,4、静矩的单位是长度的三次方,常用单位为m3或者mm3.,附录截面的几何性质,静矩、形心及其相互关系,已知静矩可以确定图形的形心坐标;,已知图形的形心坐标可以确定静矩。,附录截面的几何性质,静矩、形心及其相互关系,对于组合图形:,附录截面的几何性质,静矩、形心及其相互关系,80,10,O,试确定图示截面心 C 的位置。,附录截面的几何性质,【解】,【例 I-1】,1,2,将截面分为 两个矩形;,取 x 轴和 y 轴分别与截面的底边和左边缘重合,10,120,试确定图示梯形面积的形心和对底边的静矩。,C1,C2,图形对底边的静矩,【解】,形心位置,【例 I-2】,附录截面的几何性质,图形对 y 轴的惯性矩,图形对 z 轴的惯性矩,图形对O点的极惯性矩,图形对 y z 轴的惯性积,附录截面的几何性质,惯性矩、极惯性矩、惯性半径、惯性积,图形对 y 轴的惯性半径,图形对 z 轴的惯性半径,附录截面的几何性质,惯性矩、极惯性矩、惯性半径、惯性积,惯性半径:,任意形状的截面图形的面积为A,则图形对y轴和x轴的惯性半径分别定义为,惯性半径的特征:,1.惯性半径是对某一坐标轴定义的。,2.惯性半径的单位为m。,3.惯性半径的数值恒取正值。,附录截面的几何性质,0,0,0,0,0,=0,附录截面的几何性质,惯性矩、极惯性矩、惯性半径、惯性积,性 质:,1、惯性矩和惯性积是对一定轴而定义的,而极惯矩,是对点定义的。,2、惯性矩和极惯矩永远为正,惯性积可能为正、为负、为零。,3、任何平面图形对于通过其形心的对称轴和与此对称轴垂直的轴的惯性积为零。,4、对于面积相等的截面,截面相对于坐标轴分布的越远,其惯性矩越大。,5、组合图形对某一点的极惯性矩或对某一轴的惯性矩、惯性积,附录截面的几何性质,已知:圆截面直径d,求:Iy,Iz,IP,取圆环微元面积,附录截面的几何性质,【解】,【例 I-3】,已知:矩形截面b h。求:Iy,Iz,取平行于 x 轴和 y 轴的微元面积。,附录截面的几何性质,【解】,【例 I-4】,平行移轴定理(parallel-axis theorem)是指图形对于互相平行轴的惯性矩、惯性积之间的关系。即通过已知图形对于一对坐标的惯性矩、惯性积,求图形对另一对坐标的惯性矩与惯性积。,附录截面的几何性质,惯性矩与惯性积的平行移轴定理,a、b分别为两轴之间的距离,证明:Iy、Iz、Iyz与 Iy1、Iz1、Iy1z1的关系。,附录截面的几何性质,惯性矩与惯性积的平行移轴定理,y1=ya,z1=zb,附录截面的几何性质,惯性矩与惯性积的平行移轴定理,如果 y、z 轴通过图形形心,上述各式中的SySz0,,附录截面的几何性质,惯性矩与惯性积的平行移轴定理,因为面积及包含 a2、b2 的项恒为正,故自形心轴移至与之平行的任意轴,惯性矩总是增加的。,a、b为原坐标系原点在新坐标系中的坐标,要注意二者的正负号;二者同号时abA为正,异号时为负。所以,移轴后惯性积有可能增加也可能减少。,附录截面的几何性质,惯性矩与惯性积的平行移轴定理,试求图示三角形对 x、x1 轴的惯性矩。,xC,附录截面的几何性质,【解】,【例 I-4】,所谓转轴是坐标轴绕原点转动时,图形对这些坐标轴的惯性矩和惯性积的变化规律。,附录截面的几何性质,惯性矩与惯性积的转轴的概念,图形对通过同一坐标原点任意一对相互垂直的轴的惯性矩之和为常量,等于图形对原点的极惯性矩。,附录截面的几何性质,惯性矩和惯性积的转轴公式,如果图形对于过一点的一对坐标轴的惯性积等于零,则称这一对坐标轴为过这一点的主轴。图形对于主轴的惯性矩称为主惯性矩。,附录截面的几何性质,截 面 的 主 惯 性 轴 和 主 惯 性 矩,图形对于过一点不同坐标轴的惯性矩各不相同,而对于主惯性矩是这些惯性矩的极大值和极小值。,附录截面的几何性质,由于截面惯性积是对一对坐标轴而言的,截面主惯性轴总是成对的。,截 面 的 主 惯 性 轴 和 主 惯 性 矩,主轴的方向角以及主惯性矩可以通过初始坐标轴的惯性矩和惯性积确定:,附录截面的几何性质,主轴与形心主轴 主惯性矩与形心主惯性矩,对于任意一点(图形内或图形外)都有主轴,而通过形心的主轴称为形心主轴,图形对形心主轴的Iy惯性矩称为形心主惯性矩,简称形心主矩。工程计算中最有意义的是形心主轴与形心主矩。,附录截面的几何性质,形心主轴与形心主惯性矩,当图形有一根对称轴时,对称轴及与之垂直的任意轴即为过二者交点的主轴。,附录截面的几何性质,有对称轴截面的惯性主轴,工程计算中应用最广泛的是组合图形的形心主惯性矩,即图形对于通过其形心的主轴之惯性矩。为此,必须首先确定图形的形心以及形心主轴的位置。,组合图形的形心、形心主轴、形心主惯性矩的计算方法,因为组合图形都是由一些简单图形(例如矩形、正方形、圆形等)所组成,所以在确定其形心、形心主轴以至形心主惯性矩的过程中,通常不采用积分法,而是利用简单图形的几何性质以及平行移轴定理。,附录截面的几何性质,将组合图形分解为若干简单图形,确定组合图形形心。,以形心为坐标原点,设Oyz坐标系y、z轴一般与简单图形的形心主轴平行。确定简单图形对自身形心轴的惯性矩,利用移轴定理确定各个简单图形对y、z轴的惯性矩和惯性积,相加(或相减)后便得到整个图形的Iy、Iz 和Iyz。,计算形心主惯性矩Iy0和Iz0。,确定形心主轴的位置,即形心主轴与 z 轴的夹角。,附录截面的几何性质,组合图形的形心、形心主轴、形心主惯性矩的计算方法,1将所给图形分解为简单图形的组合,已知:图形尺寸如图,求:图形的形心主矩。,附录截面的几何性质,【解】,【例 I-6】,2.建立初始坐标,确定形心位置,附录截面的几何性质,Iy0=Iy0()+Iy0(II),3.确定形心主惯性矩,Iz0=Iz0()+Iz0(),附录截面的几何性质,主惯性轴:,图形对某对坐标轴惯性积为零,这对坐标轴称为该图形的主惯性轴,主惯性矩:,图形对主轴的惯性矩,称主惯性矩,形心主轴:,过形心的主轴称为主形心轴,形心主矩:,图形对形心主轴的惯性矩称为形心主矩,附录截面的几何性质,在下列关于平面图形的结论中,()是错误的。,A.图形的对称轴必定通过形心;,B.图形两个对称轴的交点必为形心;,D.使静矩为零的轴必为对称轴。,C.图形对对称轴的静矩为零;,D,在平面图形的几何性质中,()的值可正、可负、也可为零。,A.静矩和惯性矩;B.极惯性矩和惯性矩;,C.惯性矩和惯性积;D.静矩和惯性积。,D,附录截面的几何性质,图示任意形状截面,它的一个形心轴zc把截面分成和两部分,在以下各式中,()一定成立。,C,附录截面的几何性质,图a、b所示的矩形截面和正方形截面具有相同面积。设它们对对称轴x的惯性矩分别为 对对称轴y的惯性矩分别为,则()。,C,附录截面的几何性质,任意图形的面积为A,x0轴通过形心C,x1 轴和x0轴平行,并相距a,已知图形对x1 轴的惯性矩是I1,则对x0 轴的惯性矩为()。,B,附录截面的几何性质,图示任意形状截面,若Oxy轴为一对主形心轴,则()不是一对主轴。,C,附录截面的几何性质,

    注意事项

    本文(附录I截面的几何性质.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开