欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    线面平行与线线平行.ppt

    • 资源ID:6014226       资源大小:2.46MB        全文页数:32页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    线面平行与线线平行.ppt

    直线与平面平行的判定,普通高中课程标准实验教科书 数学(必修),2.2.2直线与平面平行的判定,直线与平面有几种位置关系?,复习引入,问题,怎样判定直线与平面平行呢?,问题,引入新课,根据定义,判定直线与平面是否平行,只需判定直线与平面有没有公共点但是,直线无限延长,平面无限延展,如何保证直线与平面没有公共点呢?,在生活中,注意到门扇的两边是平行的当门扇绕着一边转动时,另一边始终与门框所在的平面没有公共点,此时门扇转动的一边与门框所在的平面给人以平行的印象,问题,实例感受,观察,将一本书平放在桌面上,翻动书的硬皮封面,封面边缘AB所在直线与桌面所在平面具有什么样的位置关系?,将课本的一边AB紧靠桌面,并绕AB转动,观察AB的对边CD在各个位置时,是不是都与桌面所在的平面平行?,A,B,C,D,CD是桌面外一条直线,AB是桌面内一条直线,CD AB,则CD 桌面,猜想:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。,做一做,猜一猜,直线和平面平行的判定定理,如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。,b,ab,a,a,注明:,1、定理三个条件缺一不可。,2、简记:线线平行,则线面平行。,3、定理告诉我们:,要证线面平行,只要在面内找一条线,使线线平行。,例1 求证:空间四边形相邻两边中点的连线平行于经过另外两边所在的平面,已知:空间四边形ABCD中,E,F分别AB,AD的中点,求证:EF/平面BCD,证明:连接BD.,因为 AE=EB,AF=FD,所以 EF/BD(三角形中位线的性质),因为,E,F,1如图,长方体 中,,(1)与AB平行的平面是;,(2)与 平行的平面是;,(3)与AD平行的平面是;,平面,平面,平面,平面,平面,平面,随堂练习,判断下列命题是否正确,若正确,请简述理由,若不正确,请给出反例.,(1)如果a、b是两条直线,且ab,那么a 平行于经过b的任何平面;(),(2)如果直线a和平面 满足a,那么a 与内的任何直线平行;(),(3)如果直线a、b和平面 满足a,b,那么a b;(),(4)过平面外一点和这个平面平行的直线只有一条.(),试一试,2如图,正方体 中,E为 的中点,试判断 与平面AEC的位置关系,并说明理由,证明:连接BD交AC于点O,连接OE,随堂练习,感受校园生活中线面平行的例子:,天花板平面,感受校园生活中线面平行的例子:,球场地面,P,A,B,C,D,E,M,N,例2在四棱锥PABCD中,底面ABCD为平行四边形,为PB 的中点,E为AD中点。求证:EN/平面PDC,证明:取PC中点为M,连结MN,DM.在PBC中,M,N分别是PC,PB的中点,MN/BC,MN=BC.E为AD中点,底面ABCD为平行四边形,DE/BC,DE=BC.MN DE四边形DMNE为平行四边形.EN/DMDM 平面PDC,EN 平面PDCEN/平面PDC,1证明直线与平面平行的方法:,(1)利用定义;,(2)利用判定定理,2数学思想方法:转化的思想,直线与平面没有公共点,小结,关键:在面内找(作)线与已知线平行,复习:两个平面的位置关系,没有公共点,有一条公共直线,问1:两个平面平行,那么其中一个平面的直线与另一个平面的位置关系如何?,平行,问2:如果一个平面内的所有直线,都与另一个平面平行,那么这两个平面的位置关系如何?,平行,结论:两个平面平行的问题可以转化为一个平面内的直线与另一个平面平行的问题.,当然我们不需要证明所有直线都与另一平面平行,那么需要几条直线才能说明问题呢?,复习引入,2.问题:还可以怎样判定平面与平面平行呢?,(两平面平行),(两平面相交),探究,(两平面平行),(两平面相交),E,F,直线的条数不是关键!,探究,直线相交才是关键!,探究,线不在多,重在相交!,2.平面与平面平行的判定定理,若一个平面内两条相交直线分别平行于另一个平面,则这两个平面平行.,(1)该定理中,“两条”,“相交”都是必要条件,缺一不可:,(2)该定理作用:“线面平行面面平行”,(3)应用该定理,关键是在一平面内找到两条相交直线分别与另一平面内两条直线平行即可.,线线平行线面平行面面平行,练习、判断下列命题是否正确?,(1)平行于同一条直线的两平面平行,(),(2)若平面内有两条直线都平行于平面,则.,(),(3)若平面内有无数条直线都平行于平面,则.,(),(4)过平面外一点,只可作1个平面与已知平面平行,(),(5)设a、b为异面直线,则存在平面、,使,(),例1.如图,在长方体 中,求证:.,只要证一个平面内有两条相交直线和另一个平面平行即可,面面平行,线面平行,线线平行,分析:,定理的应用,1.面面平行,通常可以转化为线面平行来处理.,反思领悟:,2、证明的书写三个条件“内”、“交”、“平行”,缺一不可。,线线平行,线面平行,面面平行,基本思路:,平行四边形对边平行是常用的找平行线的方法.,线段成比例也是常用的找平行线的方法.,巩固练习:,1、如图,正方体ABCD-A1B1C1D1中,M,N,E,F分别是棱A1B1,A1D1,B1C1,C1D1的中点,求证:平面AMN/平面EFDB.,2、点P是ABC所在平面外一点,A,B,C分别是PBC、PCA、PAB的重心.求证:平面ABC/平面ABC,B,P,A,C,A,D,B,C,F,E,小结,1两个平面平行:,(1)定义:,(2)判定定理:,2数学思想方法:转化的思想,空间问题,平面问题,平面和平面没有公共点,线线平行,面面平行,线面平行,转化,转化,转化,

    注意事项

    本文(线面平行与线线平行.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开