欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    线性代数课件第三章矩阵的秩.ppt

    • 资源ID:6014098       资源大小:2.09MB        全文页数:86页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    线性代数课件第三章矩阵的秩.ppt

    三、矩阵秩的性质,证 因为,例7 设A为n阶矩阵,证明,而,所以,三、小结,(2)初等变换法,1.矩阵秩的概念,2.求矩阵秩的方法,(1)利用定义,(把矩阵用初等行变换变成为行阶梯形矩阵,行阶梯形矩阵中非零行的行数就是矩阵的秩).,(即寻找矩阵中非零子式的最高阶数);,3.矩阵秩的性质,思考题,思考题解答,答,相等.,即,由此可知,三、小结,一、线性方程组有解的判定条件,二、线性方程组的解法,3-4 线性方程组的解,一、线性方程组有解的判定条件,问题:,证,必要性.,从而,这与原方程组有非零解相矛盾,,充分性.,任取一个自由未知量为,其余自由未知量为,,证,必要性,则B的行阶梯形矩阵中最后一个非零行对应矛盾方程,,即可得方程组的一个解,充分性.,证毕,其余 个作为自由未知量,把这 行的第一个非零元所对应的未知量作为非自由未知量,小结,齐次线性方程组:系数矩阵化成行最简形矩阵,便可写出其通解;,非齐次线性方程组:增广矩阵化成行阶梯形矩阵,便可判断其是否有解若有解,化成行最简形矩阵,便可写出其通解;,例1 求解齐次线性方程组,解,二、线性方程组的解法,即得与原方程组同解的方程组,由此即得,例 求解非齐次线性方程组,解,对增广矩阵B进行初等变换,,故方程组无解,例 求解非齐次方程组的通解,解 对增广矩阵B进行初等变换,故方程组有解,且有,所以方程组的通解为,例,解证,对增广矩阵B进行初等变换,,方程组的增广矩阵为,由于原方程组等价于方程组,由此得通解:,例 设有线性方程组,解,其通解为,这时又分两种情形:,非齐次线性方程组,齐次线性方程组,三、小结,思考题,思考题解答,解,故原方程组的通解为,初等变换的定义,换法变换,倍法变换,消法变换,三种初等变换都是可逆的,且其逆变换是同一类型的初等变换,反身性,传递性,对称性,矩阵的等价,三种初等变换对应着三种初等矩阵,初等矩阵,由单位矩阵经过一次初等变换得到的矩阵称为初等矩阵,()换法变换:对调两行(列),得初等矩阵,()倍法变换:以数(非零)乘某行(列),得初等矩阵,()消法变换:以数乘某行(列)加到另一行(列)上去,得初等矩阵,经过初等行变换,可把矩阵化为行阶梯形矩阵,其特点是:可画出一条阶梯线,线的下方全为0;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖线(每段竖线的长度为一行)后面的第一个元素为非零元,也就是非零行的第一个非零元,例如,行阶梯形矩阵,经过初等行变换,行阶梯形矩阵还可以进一步化为行最简形矩阵,其特点是:非零行的第一个非零元为1,且这些非零元所在列的其它元素都为0,例如,行最简形矩阵,对行阶梯形矩阵再进行初等列变换,可得到矩阵的标准形,其特点是:左上角是一个单位矩阵,其余元素都为0,例如,矩阵的标准形,所有与A等价的矩阵组成的一个集合,称为一个等价类,标准形是这个等价类中形状最简单的矩阵,定义,矩阵的秩,定义,定理,行阶梯形矩阵的秩等于非零行的行数,矩阵秩的性质及定理,定理,定理,线性方程组有解判别定理,齐次线性方程组:把系数矩阵化成行最简形矩阵,写出通解,非齐次线性方程组:把增广矩阵化成行阶梯形矩阵,根据有解判别定理判断是否有解,若有解,把增广矩阵进一步化成行最简形矩阵,写出通解,10线性方程组的解法,定理,11初等矩阵与初等变换的关系,定理,推论,一、求矩阵的秩,二、求解线性方程组,三、求逆矩阵的初等变换法,四、解矩阵方程的初等变换法,典型例题,求矩阵的秩有下列基本方法,()计算矩阵的各阶子式,从阶数最高的子式开始,找到不等于零的子式中阶数最大的一个子式,则这个子式的阶数就是矩阵的秩,一、求矩阵的秩,()用初等变换即用矩阵的初等行(或列)变换,把所给矩阵化为阶梯形矩阵,由于阶梯形矩阵的秩就是其非零行(或列)的个数,而初等变换不改变矩阵的秩,所以化得的阶梯形矩阵中非零行(或列)的个数就是原矩阵的秩,第一种方法当矩阵的行数与列数较高时,计算量很大,第二种方法则较为简单实用,例求下列矩阵的秩,解对 施行初等行变换化为阶梯形矩阵,注意在求矩阵的秩时,初等行、列变换可以同时兼用,但一般多用初等行变换把矩阵化成阶梯形,当方程的个数与未知数的个数不相同时,一般用初等行变换求方程的解,当方程的个数与未知数的个数相同时,求线性方程组的解,一般都有两种方法:初等行变换法和克莱姆法则,二、求解线性方程组,例求非齐次线性方程组的通解,解对方程组的增广矩阵 进行初等行变换,使其成为行最简单形,由此可知,而方程组(1)中未知量的个数是,故有一个自由未知量.,例 当取何值时,下述齐次线性方程组有非零解,并且求出它的通解,解法一系数矩阵的行列式为,从而得到方程组的通解,解法二用初等行变换把系数矩阵化为阶梯形,三、求逆矩阵的初等变换法,例求下述矩阵的逆矩阵,解,注意用初等行变换求逆矩阵时,必须始终用行变换,其间不能作任何列变换同样地,用初等列变换求逆矩阵时,必须始终用列变换,其间不能作任何行变换,四、解矩阵方程的初等变换法,或者,例,解,第三章测试题,一、填空题(每小题4分,共24分),1若元线性方程组有解,且其系数矩阵的秩为,则当时,方程组有唯一解;当时,方程组有无穷多解,2齐次线性方程组,只有零解,则应满足的条件是,4线性方程组,有解的充要条件是,二、计算题,(第1题每小题8分,共16分;第2题每小题9分,共18分;第3题12分),2求解下列线性方程组,有唯一解、无解或有无穷多解?在有无穷多解时,求其通解,三、利用矩阵的初等变换,求下列方阵的逆矩阵,四、证明题(每小题8分,共16分),(每小题7分,共14分),测试题答案,

    注意事项

    本文(线性代数课件第三章矩阵的秩.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开