欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    线性代数第6章二次型及其标准形.ppt

    • 资源ID:6014051       资源大小:934KB        全文页数:50页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    线性代数第6章二次型及其标准形.ppt

    第六章,二次型及其标准型,6.3 正定二次型与正定矩阵,6.2 化二次型为标准型,6.1 二次型及其矩阵表示,6.1 二次型及其标准形,引言,判别下面方程的几何图形是什么?,作旋转变换,代入(1)左边,化为:,见下图,称为n维(或n元)的二次型.,定义,含有n个变量 的二次齐次函数,关于二次型的讨论永远约定在实数范围内进行!,例如:,都是二次型。,不是二次型。,取,则,则(1)式可以表示为,二次型用和号表示,令,则,其中 为对称矩阵。,二次型的矩阵表示(重点),注,1、对称矩阵A的写法:A一定是方阵。,2、其对角线上的元素,恰好是,的系数。,3、,的系数的一半分给,可保证,例如:二次型,注:二次型 对称矩阵,把对称矩阵 称为二次型 的矩阵,也把二次型 称为对称矩阵 的二次型,对称矩阵 的秩称为二次型 的秩,写出下面二次型 f 的矩阵表示,并求 f 的秩r(f)。,解,问:在二次型 中,如不限制 A对称,A唯一吗?,定义,只含平方项的二次型,称为二次型的标准形(或法式)。,平方项系数只在 中取值的标准形,对给定的二次型,找可逆的线性变换(坐标变换):,代入(1)式,使之成为标准形,称上面过程为化二次型为标准形。,第六章,二次型及其标准型,6.3 正定二次型与正定矩阵,6.2 化二次型为标准型,6.1 二次型及其矩阵表示,简记,设,若,一、非退化线性变换(可逆线性变换),为可逆线性变换。,当C 是可逆矩阵时,称,对于二次型,我们讨论的主要问题是:,寻求可逆的线性变换,使二次型只含平方项。,即二次型,经过可逆线性变换,使得,为什么研究可逆的变换?,即经过可逆线性变换,可化为,对于这种矩阵的关系我们来进行定义,矩阵的合同:,证明,定理 设A为对称矩阵,且A与B合同,则,注:合同仍然是一种等价关系,矩阵合同的性质:,(1)反身性,(2)对称性,(3)传递性,记作,二.化二次型为标准形,正交变换法(重点)配方法,目标:,问题转化为:,回忆:,此结论用于二次型,所以,,(P191 定理6.2.1),P 的列向量是A的相应于特征值的n个两两正交,的单位特征向量。,例1 用正交变换化二次型为标准型,并求出所用的正交变换。,解(1)写出二次型 f 的矩阵,(2)求出A的全部特征值及其对应的标准正交的特征向量,而它们所对应的标准正交的特征向量为,(3)写出正交变换,取正交矩阵,则得所欲求的正交变换,即,(4)写出,的标准型。,易知经上述正交变换,后所得二次型的标准型,2.,解 二次型的矩阵为,3)对每个基础解系进行Schmidt正交化、再单位化:,作正交变换 X=QY,则,注:正交变换化为标准形的优点:,在几何中,可以保持曲线(曲面)的几何形状不变。,2.配方法,同时含有平方项,与交叉项,的情形。,例2 用配方法将下列二次型经可逆线性变换化为标准形。,解:,令,二次型的标准形为,所求的可逆线性变换为,即,为标准形,并求出所作的可逆线性变换.,例3 用配方法化二次型,解 令,只含交叉项,的情形。,即,令,则二次型的标准形为,所用的可逆线性变换为,以上说明:,注意:,2.在变换二次型时,要求所作的线性变换是可逆的.,定理,二次型必可化为规范形。,证 设二次型 f(x)=xTAx(r(A)=r)经正交变换化为:,(思考为什么一定可化为上面形式?),再做一次可逆的线性变换,则 f 化为,思考:在可互化的二次型中最简单的是什么?在对称矩阵合同等价类中最简单的矩阵是什么?,思考并回答,(1)二次型的标准形唯一吗?,(2)二次型的标准形中平方项的个数与二次型的秩有何关系?与二次型矩阵的非零特征值的个数有何关系?,(3)设CTAC=D(C可逆,D是对角阵),D的对角元是A的特征值吗?如果C是正交矩阵又如何?,(4)设4阶对称矩阵A的特征值为0,2,2,-3,A的二次型的规范形是什么?,思考题:1、,(1)合同且相似;,(2)合同但不相似;,(3)不合同但相似;,(4)不合同且不相似;,解,二次型的矩阵为,由题意,由相似矩阵的性质得,从而,解得,A与D有相同的特征值,分别为,求得它们对应的特征向量(正交)为,再单位化并排成矩阵即得所求的正交变换矩阵,第六章,二次型及其标准型,6.3 正定二次型与正定矩阵,6.2 化二次型为标准型,6.1 二次型及其矩阵表示,6.3 正定二次型,本节讨论二次型的分类问题.重点是正定二次型.,在n维的二次型中,如果两个二次型 xTAx 和 yTBy可以互化,即,则称这两个二次型等价。这相当于,即在n阶对称矩阵中A与B合同等价。,我们把等价的二次型分为同一类。相当于对称矩阵的合同等价类。,什么条件决定两个二次型等价?,我们知道,等价的二次型有相同的秩,也就是标准形中平方项个数相等.但秩相等的两个二次型不一定等价.,例如 与 不可能等价.,因为不存在可逆矩阵 C 满足,因为,(P196 定理6.3.1),在二次型的标准形中,正项个数与负项个数保持不变。或者说二次型的规范形是唯一。,二次型的标准形中正项个数称为二次型的正惯性指数,负项个数称为二次型的负惯性指数.,设二次型 f 的秩为 r,正惯性指数为 p,则负惯性指为 r p.f 的规范形为,惯性定理指出:两个二次型是否等价,被其秩和正惯性指数唯一确定。从而对称阵的合同等价.,如果 n 维的二次型 f(x)=xTAx 其标准形系数全为正,则称之为正定二次型,二次型的矩阵 A 称为正定矩阵;如果标准形中系数全为负,则称之为负定二次型,二次型的矩阵称为负定矩阵。,定义,正定二次型为,正定矩阵就是特征值全大于零的对称矩阵,也是与单位矩阵合同的对称矩阵。,显然,如果 f 负定,则 f 正定,以后只需讨论正定二次型(正定矩阵)。,二次型 f(x)=xTAx 正定的充要条件是对任意x0,都有 f(x)=xTAx 0.(注:书上以后者为定义),必要性:设 f 正定,即,对任意x0,则,故,充分性:反证。如果有某个,取,与 矛盾。,(霍尔维茨定理),对称矩阵A为正定的充要条件是:A的各阶主子式全为正,即,判别二次型,是否正定.,它的各阶顺序主子式,故上述二次型是正定的.,f 的矩阵为,解,是正定二次型?,解 二次型的矩阵为,A的顺序主子式为:,所以当,例2 问t 满足什么条件时,二次型,A的顺序主子式全大于0,此时 f 正定。,判别二次型,的正定性.,解,二次型的矩阵,它的各阶顺序主子式,A是负定矩阵,二次型是负定二次型。,或者,判别 为正定.,解,判别二次型,是否正定.,二次型的矩阵为,即知A是正定矩阵,故此二次型为正定二次型.,求得其特征值,与矩阵 合同的矩阵是(),A特征值是两正一负。,设 是正定矩阵,证明,

    注意事项

    本文(线性代数第6章二次型及其标准形.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开