电路基础分析邱关源罗先觉第一章.ppt
绪论,一、本课程的性质和地位,二、电路分析的研究对象,三、本课程的特点和思想方法,一、本课程的性质和地位,本课程的性质是电气、电子类各专业共同开设的一门很重要的技术基础课。内容包括电路分析和电路综合,电路分析是研究电路的分析与计算方法。,电路理论是学习一切电气、电子工程的理论基础。通过理论与实践教学要掌握电路的分析计算方法和解决实际问题的理论基础和必要的基本知识,并受到一定的操作技能训练。,二、电路分析的研究对象,电路分析的研究对象是把实践中应用的各种工程电路抽象化,以能量转换为核心去研究它的基本规律和分析计算方法。实际的电路千差万别,我们并不涉及太多的应用技术,而是抽象化地讨论电路中具有共性的内在规律。抽象化的方法就是为电路建立抽象化的电路模型。再用这些基本模型组成各种各样的复合模型,进而讨论电路的分析计算方法。所以电路的分析计算方法是电路分析基础课程的核心内容。,关于电路的基本规律是指与电能相关的几种基本能量转换规律,它是电路分析计算的最基本的理论依据。这里我们先引入两个名词概念,把电源的作用称为激励;而把由激励引起的,在电路中产生的结果称为响应。所以作用与结果的关系就是激励与响应的关系。因此已知电路参数和激励,如何求取电路中的响应是电路分析贯穿始终的一条主线。,三、本课程的特点和思想方法,特点:,在物理学的基础上,应用大量的数学,又结合工程实际来抽象的研究电路的分析计算方法。讨论问题的侧重点不是元件的内部机理,而是重在外部关系,即元件端口上电流电压间是什么关系。另外由若干个元件组成电路整体之后,各变量之间是什么关系。是一门突出分析计算方法的理论课。前面说过,已知电路参数和外激励,如何求取电路中的响应是电路分析的主线。,高等教育的指导思想是重在导而不在教,听课要记好笔记,要多看一些参考书,教材仅仅是一本参考书。要重视实践环节,电路理论也是实践性很强的课程。实验课不仅是为了验证理论,更重要的是技能的训练。要多做练习,这是学好门课程的基本保证。4.作业要规范书写,公式要居中,先写公式后代数据,大图居中,小图在右,单位要用规定的符号,不允许用汉字。单字母单位符号用大写正体书写如V、A,多字母单位符号中第一字母用大写正体字母,其余字母用小写,如Hz、Rad/S(弧度/秒)等。,在学习的时候还应注意以下几个问题:,第1章 电路模型和电路定律,本章重点,1.电压、电流的参考方向,3.基尔霍夫定律,重点:,2.电阻、电感、电容元件和电源 元件的特性,返 回,1.1 电路和电路模型,1.实际电路,功能,a 能量的传输、分配与转换;b 信息的传递、控制与处理。,建立在同一电路理论基础上。,由电工设备和电气器件按预期目的连接构成的电流的通路。,下 页,上 页,共性,返 回,2.电路组成,电路一般由电源、负载、中间环节组成。,电源:提供电能的设备,如发电机、电池、信号源等,负载:就是指用电设备,如电灯、电视、空调等,中间环节:连接电源和负载,用于传输电能和电信号,电池电源灯泡负载导线中间环节,反映实际电路部件的主要电磁 性质的理想电路元件及其组合。,3.电路模型,电路图,理想电路元件,有某种确定的电磁性能的理想元件。,电路模型,下 页,上 页,返 回,5种基本的理想电路元件:,电阻元件:表示消耗电能的元件,电感元件:表示产生磁场,储存磁场能量的元件,电容元件:表示产生电场,储存电场能量的元件,电压源和电流源:表示将其它形式的能量转变成 电能的元件。,5种基本理想电路元件有三个特征:(a)只有两个端子;(b)可以用电压或电流按数学方式描述;(c)不能被分解为其他元件。,下 页,上 页,注意,返 回,.理想电路元件,只进行着一种能量交换的元件。,理想电源,理想电压源,理想电流源,有源元件,理想负载,电阻,电感,电容,无源元件,具有相同的主要电磁性能的实际电路部件,在一定条件下可用同一电路模型表示;同一实际电路部件在不同的应用条件下,其电路模型可以有不同的形式。,下 页,上 页,例,电感线圈的电路模型,注意,返 回,1.2 电流和电压的参考方向,电路中的主要物理量有电压、电流、电荷、磁链、能量、电功率等。在线性电路分析中人们主要关心的物理量是电流、电压和功率。,1.电流的参考方向,电流,电流强度,带电粒子有规则的定向运动,单位时间内通过导体横截面的电荷量,下 页,上 页,返 回,方向,规定正电荷的运动方向为电流的实际方向,单位,1kA=103A1mA=10-3A1 A=10-6A,A(安培)、kA、mA、A,元件(导线)中电流流动的实际方向只有两种可能:,对于复杂电路或电路中的电流随时间变化时,电流的实际方向往往很难事先判断。,下 页,上 页,问题,返 回,参考方向,任意假定一个正电荷运动的方向即为电流的参考方向。,i 0,i 0,实际方向,实际方向,电流的参考方向与实际方向的关系:,下 页,上 页,表明,返 回,电流参考方向的两种表示:,用箭头表示:箭头的指向为电流的参考方向。,用双下标表示:如 iAB,电流的参考方向由A指向B。,下 页,上 页,返 回,电压Uab,单位,2.电压的参考方向,单位正电荷q 从电路中一点(a)移至另一点(b)时电场力做功(W)的大小。,电位U,单位正电荷q 从电路中一点移至参考点(U0)时电场力做功的大小。,实际电压方向,电位真正降低的方向。,下 页,上 页,V(伏)、kV、mV、V,返 回,例,已知:4C正电荷由a点均匀移动至b点电场力做功8J,由b点移动到c点电场力做功为12J,若以b点为参考点,求a、b、c点的电位和电压Uab、U bc;若以c点为参考点,再求以上各值。,解,(1),下 页,上 页,返 回,解,(2),下 页,上 页,结论,电路中电位参考点可任意选择;参考点一经选定,电路中各点的电位值就唯一确定;当选择不同的电位参考点时,电路中各点电位值将改变,但任意两点间电压保持不变。,返 回,复杂电路或交变电路中,两点间电压的实际方向往往不易判别,给实际电路问题的分析计算带来困难。,电压(降)的参考方向,假设高电位指向低电位的方向。,下 页,上 页,问题,返 回,电压参考方向的三种表示方式:,(1)用箭头表示:,(2)用正负极性表示,(3)用双下标表示,U,U,+,UAB,下 页,上 页,返 回,元件或支路的u,i 采用相同的参考方向称之为关联参考方向。反之,称为非关联参考方向。,关联参考方向,非关联参考方向,3.关联参考方向,i,+,-,+,-,i,u,u,下 页,上 页,返 回,分析电路前必须选定电压和电流的参考方向,参考方向一经选定,必须在图中相应位置标注(包括方向和符号),在计算过程中不得任意改变,参考方向不同时,其表达式相差一负号,但电压、电流的实际方向不变。,例,电压电流参考方向如图中所标,问:对A、B两部分电路电压电流参考方向关联否?,答:A电压、电流参考方向非关联;B电压、电流参考方向关联。,下 页,上 页,注意,返 回,1.3 电功率和能量,1.电功率,功率的单位:W(瓦)(Watt,瓦特),能量的单位:J(焦)(Joule,焦耳),单位时间内电场力所做的功。,下 页,上 页,返 回,2.电路吸收或发出功率的判断,u,i 取关联参考方向,P=ui,P0 吸收,P0 发出,P=-ui,P0 吸收,P0 发出,u,i 取非关联参考方向,下 页,上 页,返 回,例,求图示电路中各方框所代表的元件吸收或产生的功率。,下 页,上 页,已知:U1=1V,U2=-3V,U3=8V,U4=-4V,U5=7V,U6=-3V,I1=2A,I2=1A,,I3=-1A,返 回,解,对一完整的电路,满足:发出的功率吸收的功率,下 页,上 页,注意,返 回,下 页,上 页,1.4 电路元件,是电路中最基本的组成单元。,1.电路元件,返 回,5种基本的理想电路元件:,电阻元件:表示消耗电能的元件,电感元件:表示产生磁场,储存磁场能量的元件,电容元件:表示产生电场,储存电场能量的元件,电压源和电流源:表示将其它形式的能量转变成 电能的元件。,注意,如果表征元件端子特性的数学关系式是线性关系,该元件称为线性元件,否则称为非线性元件。,1.5 电阻元件,2.线性时不变电阻元件,电路符号,电阻元件,对电流呈现阻力的元件。其特性可用ui平面上的一条曲线来描述:,任何时刻端电压与电流成正比的电阻元件。,1.定义,伏安特性,下 页,上 页,0,返 回,ui 关系,R 称为电阻,单位:(Ohm),满足欧姆定律,单位,G 称为电导,单位:S(Siemens),u、i 取关联参考方向,下 页,上 页,伏安特性为一条过原点的直线,返 回,如电阻上的电压与电流参考方向非关联,公式中应冠以负号;,说明线性电阻是无记忆、双向性的元件。,欧姆定律,只适用于线性电阻(R 为常数);,则欧姆定律写为,u R i i G u,公式和参考方向必须配套使用!,下 页,上 页,注意,返 回,3.功率和能量,电阻元件在任何时刻总是消耗功率的。,p-u i-(R i)i i2 R u2/R,p u i i2R u2/R,功率,下 页,上 页,表明,返 回,从 t0 到 t 电阻消耗的能量:,4.电阻的开路与短路,能量,短路,开路,下 页,上 页,0,0,返 回,下 页,上 页,实际电阻器,返 回,1.6 电压源和电流源,电路符号,1.理想电压源,定义,下 页,上 页,其两端电压总能保持定值或一定的时间函数,其值与流过它的电流 i 无关的元件叫理想电压源。,返 回,电源两端电压由电源本身决定,与外电路无关;与流经它的电流方向、大小无关。,通过电压源的电流由电源及外电路共同决定。,理想电压源的电压、电流关系,直流电压源的伏安关系,下 页,上 页,例,外电路,电压源不能短路!,0,返 回,电压源的功率,电压、电流参考方向非关联;,电流(正电荷)由低电位向高电位移动,外力克服电场力作功,电源发出功率。,发出功率,起电源作用,物理意义:,下 页,上 页,电压、电流参考方向关联;,物理意义:,电场力做功,电源吸收功率,吸收功率,充当负载,返 回,例,计算图示电路各元件的功率,解,发出,吸收,吸收,满足:P(发)P(吸),下 页,上 页,返 回,其输出电流总能保持定值或一定的时间函数,其值与它的两端电压u 无关的元件叫理想电流源。,电路符号,2.理想电流源,定义,下 页,上 页,理想电流源的电压、电流关系,电流源的输出电流由电源本身决定,与外电路无关;与它两端电压方向、大小无关。,返 回,电流源两端的电压由电源及外电路共同决定。,直流电流源的伏安关系,下 页,上 页,0,例,外电路,电流源不能开路!,返 回,可由稳流电子设备产生,如晶体管的集电极电流与负载无关;光电池在一定光线照射下光电子被激发产生一定值的电流等。,下 页,上 页,实际电流源的产生:,电流源的功率,电压、电流的参考方向非关联;,发出功率,起电源作用,电压、电流的参考方向关联;,吸收功率,充当负载,返 回,例,计算图示电路各元件的功率,解,发出,吸收,满足:P(发)P(吸),下 页,上 页,返 回,1.7 受控电源(非独立源),电路符号,受控电压源,1.定义,受控电流源,电压或电流的大小和方向不是给定的时间函数,而是受电路中某个地方的电压(或电流)控制的电源,称受控源。,下 页,上 页,返 回,电流控制的电流源(CCCS),:电流放大倍数,根据控制量和被控制量是电压u 或电流i,受控源可分四种类型:当被控制量是电压时,用受控电压源表示;当被控制量是电流时,用受控电流源表示。,2.分类,四端元件,输出:受控部分,输入:控制部分,下 页,上 页,返 回,g:转移电导,电压控制的电流源(VCCS),电压控制的电压源(VCVS),:电压放大倍数,下 页,上 页,返 回,电流控制的电压源(CCVS),r:转移电阻,例,电路模型,下 页,上 页,返 回,3.受控源与独立源的比较,独立源电压(或电流)由电源本身决定,与电路中其它电压、电流无关,而受控源电压(或电流)由控制量决定。,独立源在电路中起“激励”作用,在电路中产生电压、电流,而受控源是反映电路中某处的电压或电流对另一处的电压或电流的控制关系,在电路中不能作为“激励”。,下 页,上 页,返 回,例,求:电压u2,解,下 页,上 页,返 回,1.8 基尔霍夫定律,基尔霍夫定律包括基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)。它反映了电路中所有支路电压和电流所遵循的基本规律,是分析理想电路的基本定律。基尔霍夫定律与元件特性构成了电路分析的基础。,下 页,上 页,返 回,1.几个名词,电路中同一条支路的电流相等。,a,b,支路,电路中任意一条不分岔的路径就叫一条支路。,结点,b=3,下 页,上 页,三条以上支路的连接点称为结点。,n=2,返 回,由支路组成的闭合路径。,两结点间的一条通路。由支路构成,对平面电路,其内部不含任何支路的回路称网孔。,l=3,3,路径,回路,网孔,网孔是回路,但回路不一定是网孔。,下 页,上 页,注意,返 回,2.基尔霍夫电流定律(KCL),令流出为“+”,有:,例,在理想电路中,任意时刻,对任意结点流出(或流入)该结点电流的代数和等于零。,流进的电流等于流出的电流,下 页,上 页,返 回,例,三式相加得:,KCL可推广应用于电路中包围多个结点的任一闭合面。,下 页,上 页,表明,返 回,KCL是电荷守恒和电流连续性原理在电路中任意结点处的反映;,KCL是对结点处支路电流加的约束,与支路上接的是什么元件无关,与电路是线性还是非线性无关;,KCL方程是按电流参考方向列写的,与电流实际方向无关。,下 页,上 页,明确,返 回,3.基尔霍夫电压定律(KVL),下 页,上 页,标定各元件电压参考方向,选定回路绕行方向,顺时针或逆时针.,在理想电路中,任一时刻,沿任一回路,所有支路电压的代数和恒等于零。,返 回,U1US1+U2+U3+U4+US4=0,U2+U3+U4+US4=U1+US1,或:,R1I1+R2I2R3I3+R4I4=US1US4,下 页,上 页,KVL也适用于电路中任一假想的回路。,注意,返 回,例,KVL的实质反映了电路遵从能量守恒定律;,KVL是对回路中的支路电压加的约束,与回路各支路上接的是什么元件无关,与电路是线性还是非线性无关;,KVL方程是按电压参考方向列写,与电压实际方向无关。,下 页,上 页,明确,返 回,4.KCL、KVL小结:,KCL是对支路电流的线性约束,KVL是对回路电压的线性约束。,KCL、KVL与组成支路的元件性质及参数无关。,KCL表明在每一节点上电荷是守恒的;KVL是能量守恒的具体体现(电压与路径无关)。,KCL、KVL只适用于理想电路。,下 页,上 页,返 回,下 页,上 页,思考,返 回,下 页,上 页,例1,求电流 i,解,例2,解,求电压 u,返 回,下 页,上 页,例3,求电流 i,例4,求电压 u,解,解,要求,能熟练求解含源支路的电压和电流。,返 回,解,下 页,上 页,例5,求电流 I,例6,求电压 U,解,返 回,解,下 页,上 页,例7,求开路电压 U,返 回,解,选择参数可以得到电压和功率放大。,上 页,例8,求输出电压 U,返 回,