欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    自动控制理论传递函数.ppt

    • 资源ID:5992799       资源大小:491.02KB        全文页数:27页
    • 资源格式: PPT        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    自动控制理论传递函数.ppt

    Tuesday,September 12,2023,1,第二节 控制系统的传递函数,Tuesday,September 12,2023,2,传递函数的基本概念,传递函数是经典控制理论中最重要的数学模型之一。利用传递函数,在系统的分析和综合中可解决如下问题:,不必求解微分方程就可以研究初始条件为零的系统在输入信号作用下的动态过程。,可以研究系统参数变化或结构变化对系统动态过程的影响,因而使分析系统的问题大为简化。,可以把对系统性能的要求转化为对系统传递函数的要求,使综合问题易于实现。,Tuesday,September 12,2023,3,系统或环节的微分方程为:式中:x(t)输入,y(t)输出 为常系数,一、传递函数的基本概念,将上式求拉氏变化,得(令初始值为零),称为系统或环节的传递函数,即:环节的传递函数是它的微分方程在零初始条件下输出量的拉氏变换与输入量拉氏变换之比。也可写成:Y(s)=G(s)X(s)。通过拉氏反变换可求出时域表达式y(t)。,传递函数的基本概念,Tuesday,September 12,2023,4,传递函数的基本概念,总结:传递函数是由线性微分方程(线性系统)当初始值为零时进行拉氏变化得到的。,已知传递函数G(s)和输入函数X(s),可得出输出Y(s)。通过反变换可求出时域表达式y(t)。,可以由环节的微分方程直接得出传递函数,只要将各阶导数用各阶s代替即可。即:,Tuesday,September 12,2023,5,传递函数的基本概念|例2-8,运放:,运放:,功放:,例2-8求速度控制系统的传递函数。解各环节的微分方程和传递函数分别为:,直流电动机:,Tuesday,September 12,2023,6,传递函数的基本概念|例2-8,上式有两个输入量,而传递函数只能处理单输入-单输出系统。对于线性系统,可以将多个输入分别独立处理,然后叠加起来。下面分别讨论两个输入单独作用时的传递函数。,令,得转速对电枢电压的传递函数:,令,得转速对负载力矩的传递函数:,最后利用叠加原理得转速表示为:,反馈环节:,Tuesday,September 12,2023,7,方法1:见例2-1 求上式的拉氏变换,得:,传递函数为:,传递函数的基本概念|例2-8a,方法2:复阻抗(电阻、电容和电感)分别为。则:,Tuesday,September 12,2023,8,传递函数的基本概念|例2-9,B为虚地点,所以,所以:,Tuesday,September 12,2023,9,传递函数的概念适用于线性定常系统,它与线性常系数微分方程一一对应。且与系统的动态特性一一对应。传递函数不能反映系统或元件的学科属性和物理性质。物理性质和学科类别截然不同的系统可能具有完全相同的传递函数。而研究某传递函数所得结论可适用于具有这种传递函数的各种系统。传递函数仅与系统的结构和参数有关,与系统的输入无关。只反映了输入和输出之间的关系,不反映中间变量的关系。传递函数的概念主要适用于单输入单输出系统。若系统有多个输入信号,在求传递函数时,除了一个有关的输入外,其它的输入量一概视为零。传递函数忽略了初始条件的影响。传递函数传递函数是s的有理分式,对于大多数实际系统,分母的阶次n大于分子的阶次m,此时称为n阶系统。,传递函数的基本概念,关于传递函数的几点说明,Tuesday,September 12,2023,10,传递函数的表现形式,传递函数的几种表现形式:,表示成零点、极点形式:,Tuesday,September 12,2023,11,传递函数的表现形式,写成时间常数形式:,Tuesday,September 12,2023,12,传递函数的表现形式,Tuesday,September 12,2023,13,传递函数的表现形式,若再考虑有n个零值极点,则传递函数的通式可以写成:,从上式可以看出:传递函数是一些基本因子的乘积。这些基本因子就是典型环节所对应的传递函数,是一些最简单、最基本的一些形式。,式中:,或:,Tuesday,September 12,2023,14,比例环节,二、典型环节及其传递函数,典型环节有比例、积分、惯性、振荡、微分和延迟环节等多种。以下分别讨论典型环节的时域特征和复域(s域)特征。时域特征包括微分方程和单位阶跃输入下的输出响应。s域特性研究系统的零、极点分布。,比例环节又称为放大环节。k为放大系数。实例:分压器,放大器,无间隙无变形齿轮传动等。,Tuesday,September 12,2023,15,积分环节,Tuesday,September 12,2023,16,积分环节实例,Tuesday,September 12,2023,17,(三)惯性环节,当输入为单位阶跃函数时,有,可解得:,式中:k为放大系数,T为时间常数。,惯性环节,当k=1时,输入为单位阶跃函数时,时域响应曲线和零极点分布图如下:,通过原点的 斜率为1/T。只有一个极点(-1/T)。,Tuesday,September 12,2023,18,惯性环节的单位阶跃响应,Tuesday,September 12,2023,19,两个实例:,惯性环节实例,Tuesday,September 12,2023,20,振荡环节,(四)振荡环节:时域方程:,传递函数:,上述传递函数有两种情况:,Tuesday,September 12,2023,21,振荡环节分析,分析:y(t)的响应过程是振幅按指数曲线衰减的的正弦运动。与 有关。反映系统的阻尼程度,称为阻尼系数,称为无阻尼振荡圆频率。当 时,曲线单调上升,无振荡。当 时,曲线衰减振荡。越小,振荡越厉害。,若,传递函数有一对共轭复数极点。传函可写成:,对阶跃输入:,Tuesday,September 12,2023,22,解:当 时,有一对共轭复数极点。所以:,解得:,例:求质量-弹簧-阻尼系统的 和。(见例2-2,p11),振荡环节例子,Tuesday,September 12,2023,23,微分环节,(五)微分环节:微分环节的时域形式有三种形式:,相应的传递函数为:,分别称为:纯微分,一阶微分和二阶微分环节。微分环节没有极点,只有零点。分别是零、实数和一对共轭零点(若)。在实际系统中,由于存在惯性,单纯的微分环节是不存在的,一般都是微分环节加惯性环节。,Tuesday,September 12,2023,24,式中:,微分环节实例,Tuesday,September 12,2023,25,延迟环节,(六)延迟环节:又称时滞,时延环节。它的输出是经过一个延迟时间后,完全复现输入信号。如右图所示。其传递函数为:,Tuesday,September 12,2023,26,(七)其他环节:还有一些环节如 等,它们的极点在s平面的右半平面,我们以后会看到,这种环节是不稳定的。称为不稳定环节。,其他环节,Tuesday,September 12,2023,27,小结,传递函数的基本概念传递函数的列写(由微分方程和系统原理图出发)传递函数的适用范围和局限性典型环节及其传递函数(单位阶跃响应及其零极点分布),

    注意事项

    本文(自动控制理论传递函数.ppt)为本站会员(sccc)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开