欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    概率论与数理统计浙大四版第二章3讲.ppt

    • 资源ID:5992164       资源大小:584KB        全文页数:46页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    概率论与数理统计浙大四版第二章3讲.ppt

    第四节,连续型随机变量,连续型随机变量X所有可能取值充满一个区间,对这种类型的随机变量,不能象离散型随机变量那样,以指定它取每个值概率的方式,去给出其概率分布,而是通过给出所谓“概率密度函数”的方式.,下面我们就来介绍对连续型随机变量的描述方法.,1.连续型r.v及其密度函数的定义,定义:若对于随机变量X的分布函数F(x),存在非负实函数f(x),使得对任意的实数x,都有 则称X为连续型随机变量,f(x)称为随机变量X的概率密度函数(Probability Density Function)。,1 o,2 o,这两条性质是判定一个函数 f(x)是否为某r.vX的概率密度函数的充要条件.,故 X的密度 f(x)在 x 这一点的值,恰好是X落在区间 上的概率与区间长度 之比的极限.这里,如果把概率理解为质量,f(x)相当于线密度.,3.对 f(x)的进一步理解:,要注意的是,密度函数 f(x)在某点处a的高度,并不反映X取值的概率.但是,这个高度越大,则X取a附近的值的概率就越大.也可以说,在某点密度曲线的高度反映了概率集中在该点附近的程度.,若不计高阶无穷小,有:,它表示随机变量 X 取值于 的概率近似等于.,连续型r.v取任一指定值的概率为0.,即:,a为任一指定值,这是因为,需要指出的是:,由此得,,1)对连续型 r.v X,有,2)由P(X=a)=0 可推知,而 X=a 并非不可能事件,并非必然事件,称A为几乎不可能事件,B为几乎必然事件.,可见,,由P(A)=0,不能推出,由P(B)=1,不能推出 B=S,解,例1,3、连续型 r.v的分布函数,即分布函数是密度函数的可变上限的定积分.,由上式可得,在 f(x)的连续点,,下面我们来求一个连续型 r.v 的分布函数.,F(x)=P(X x)=,解:,求 F(x).,解:对x-1,F(x)=0,对,对 x1,F(x)=1,即,大家一起来作下面的练习.,求 F(x).,设,由于f(x)是分段表达的,求F(x)时注意分段求.,对连续型r.v,若已知F(x),我们通过求导也可求出 f(x),请看下例.,即,例3 设r.vX的分布函数为,(1)求X取值在区间(0.3,0.7)的概率;(2)求X的概率密度.,解:(1)P(0.3X0.7)=F(0.7)-F(0.3),=0.72-0.32=0.4,(2)f(x)=,注意到F(x)在1处导数不存在,根据改变被积函数在个别点处的值不影响积分结果的性质,可以在 没意义的点处,任意规定 的值.,下面给出几个常用连续型r.v的例子.,(1)若 r.vX的概率密度为:,则称X服从区间(a,b)上的均匀分布,记作:,X U(a,b),它的实际背景是:r.v X 取值在区间(a,b)上,并且取值在(a,b)中任意小区间内的概率与这个小区间的长度成正比.则 X 具有(a,b)上的均匀分布.,分布函数,公交线路上两辆公共汽车前后通过某汽车停车站的时间,即乘客的候车时间等.,均匀分布常见于下列情形:,如在数值计算中,由于四舍五 入,小数点后某一位小数引入的误差;,例4 某公共汽车站从上午7时起,每15分钟来一班车,即 7:00,7:15,7:30,7:45 等时刻有汽车到达此站,如果乘客到达此站时间 X 是7:00 到 7:30 之间的均匀随机变量,试求他候车时间少于5 分钟的概率.,解:,依题意,X U(0,30),以7:00为起点0,以分为单位,为使候车时间X少于 5 分钟,乘客必须在 7:10 到 7:15 之间,或在7:25 到 7:30 之间到达车站.,所求概率为:,从上午7时起,每15分钟来一班车,即 7:00,7:15,7:30等时刻有汽车到达汽车站,,即乘客候车时间少于5 分钟的概率是1/3.,例5 设随机变量 X 在 2,5 上服从均匀分布,现对 X 进行三次独立观测,试求至少有两次观测值大于3 的概率.,X 的分布密度函数为,设 A 表示“X 的观测值大于 3”,解,即 A=X 3.,因而有,设Y 表示3次独立观测中观测值大于3的次数,则,区间(0,1)上的均匀分布U(0,1)在计算机模拟中起着重要的作用.,实用中,用计算机程序可以在短时间内产生大量服从(0,1)上均匀分布的随机数.它是由一种迭代过程产生的.,严格地说,计算机中产生的U(0,1)随机数并非完全随机,但很接近随机,故常称为伪随机数.,如取n足够大,独立产生n个U(0,1)随机数,则从用这 n 个数字画出的频率直方图就可看出,它很接近于(0,1)上的均匀分布U(0,1).,2.指数分布,某些元件或设备的寿命服从指数分布.例如无线电元件的寿命、电力设备的寿命、动物的寿命等都服从指数分布.,应用与背景,分布函数,例6 设某类日光灯管的使用寿命 X 服从参数为=2000的指数分布(单位:小时).(1)任取一只这种灯管,求能正常使用1000小时以上的概率.(2)有一只这种灯管已经正常使用了1000 小时以上,求还能使用1000小时以上的概率.,X 的分布函数为,解,指数分布的重要性质:“无记忆性”.,至此,我们已初步介绍了两类重要的随机变量:离散型r.v和连续型r.v,对它们分别用概率函数和密度函数描述.,下节课我们学习最重要的连续型随机变量:正态分布.,作业,由上述可知,对于连续型随机变量,我 们关心它在某一点取值的问题没有太大的意义;我们所关心的是它在某一区间上取值的问题,例 2,某电子元件的寿命 X(单位:小时)是以,为密度函数的连续型随机变量求 5 个同类型的元件在使用的前 150 小时内恰有 2 个需要更换的概率.,解:设 A=某元件在使用的前 150 小时内需要更换,例 2(续),检验 5 个元件的使用寿命可以看作是在做一个5重Bernoulli试验设 Y 表示5 个元件中使用寿命不超过150小时 的元件数,,故所求概率为,四色猜想,四色猜想是世界近代三大数学难题之一(另外两个是费马定理和哥德巴赫猜想)。1852年,毕业于伦敦大学的弗南西斯格思里(Francis Guthrie)来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。”,用数学语言表示,即“将平面任意地细分为不相重迭的区域,每一个区域总可以用1,2,3,4这四个数字之一来标记,而不会使相邻的两个区域得到相同的数字。”这是一个拓扑学问题。,1852年10月23日,他的弟弟就这个问题的证明请教他的老师、著名数学家德摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家哈密尔顿请教。哈密尔顿接到摩尔根的信后,对四色问题进行论证。但直到1865年哈密尔顿逝世为止,问题也没有能够解决。1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。,1878年肯普和泰勒宣布证明了此定理,11年后,即1890年,数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题。,1976年,在J.Koch的算法的支持下,美国数学家阿佩尔(Kenneth Appel)与哈肯(Wolfgang Haken)在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明(打字约900页)。四色猜想的计算机证明,轰动了世界,开辟了机器证明的美好前景。,

    注意事项

    本文(概率论与数理统计浙大四版第二章3讲.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开