新激光ppt课件第二章光学谐振腔理论.ppt
2.8 高斯光束,一、高斯光束的基本性质,1.基模高斯光束,沿z轴方向传播的基模高斯光束为,其中,高斯光束的瑞利长度,瑞利长度,它表示从束腰到光斑半径增加到腰斑半径的 倍处的位置.在 范围内,高斯光束可近似为平行,所以应用中常把 叫做高斯光束的准直距离.,高斯光束性质,高斯光束既不是平面波,也不是球面波,但在其传输轴线附近可近似看作是一种非均匀球面波。传播中曲率中心和曲率半径不断改变,其振幅和强度在横截面内始终保持高斯分布特性,且其等相位面始终保持为球面.,2.高阶高斯光束,方形镜稳定腔中高阶高斯光束是厄米高斯光束;圆形镜中是拉盖尔高斯光束.,(1).厄米高斯光束,厄米-高斯光束的横向场分布由高斯函数与厄米多项式的乘积决定.沿x方向有m条节线,沿y方向有n条节线;,光斑半径,沿传输轴线相对于几何相移的附加相位超前为,远场发散角,(2).拉盖尔-高斯光束,拉盖尔-高斯光束的横向场分布由振幅因子决定.沿半径方向有n个节线圆,沿辐角方向有m条节线;,振幅因子,相位因子,光斑半径,远场发散角,附加相移,二、高斯光束的q参数,1.高斯光束的特征参数,(或zR)的大小及位置,(z)R(z),2.q参数,令,参数q(z)相当于球面波的曲率半径R叫做高斯光束的复曲率半径,简称q参数.,一个q参数包含了(z)和R(z),它可以确定整个高斯光束的结构,是表征高斯光束的特征参数.,三、q参数的变换规律,1.普通球面波R的变换规律,(1).普通球面波在自由空间的传播规律,R1=R(z1)=z1R2=R(z2)=R1+L,(2).普通球面波经过薄透镜的变换规律,F,(3).普通球面波的ABCD定律,球面波的ABCD规律,2.q参数的ABCD定律,(1).高斯光束在自由空间的传播规律,(2).高斯光束经过薄透镜的变换规律,且是薄透镜,四、ABCD定律在谐振腔中的应用,用q参数的ABCD定律可以很方便地求出自再现模、曲率半径、光斑尺寸、束腰位置、腰斑半径,并且可以导出谐振腔的稳定性条件。,例,谐振腔的往返矩阵为,则,由于是自再现模,解得,所以稳定性条件,作 业(第一次),1.热平衡时,原子能级E2的数密度为n2,下能级E1的数密度为n1,设g1=g2,求:(1)当原子跃迁时相应频率为=3000MHz,T=300K时,n2/n1=?(2)若原子跃迁时发光波长=1,n2/n1=0.1时,温度T=?,则有:,(2),解:(1),2.已知氢原子第一激发态(E2)与基态(E1)之间能量差为1.6410-18J,设火焰(T=2700K)中含有1020个氢原子.原子按玻尔兹曼分布,且4g1=g2.求:(1)能级E2上的原子数n2=?(2)设火焰中每秒发射的光子数为108n2,求光功率为多少瓦?,解:(1),且,可求出,(2)功率,作 业(第二次),1.(1)一质地均匀的材料对光的吸收为0.01mm-1、光通过10cm长的该材料后,出射光强为入射光强的百分之几?(2)一光束通过长度为1m的均匀激活工作物质,如果出射光强为入射光强的2倍,求该物质的增益系数。,(1),(2),解:,2.设氖原子静止时发出0.6328m红光的中心频率为4.741014Hz,室温下氖原子的平均速率设为560m/s。求此时接收器接收频率与中心频率相差多少?,解:,作 业,红宝石激光器是一个三能级系统,设Cr3+的N=1019/cm3,21=310-3s,今以波长=0.5100m的光泵激励。试估算单位体积的阈值抽运功率。,解:,(第三次),曲率半径R10,R20的腔能否成为稳定腔,如果能,请求出其稳定性条件。,(第四次),作 业,解:能,稳定性条件为:,2.要制作一个腔长L=60cm的对称稳定腔,反射镜的曲率半径取值范围如何?设稳定腔的一块反射镜的曲率半径R1=4L,求另一面镜的曲率半径取值范围。,(a),(b),解:,1.考虑一用于氩离子激光器的稳定球面腔,波长=0.5145m,腔长L=1m,腔镜曲率半径R1=1.5m,R2=4m.试计算光腰尺寸和位置及两镜面上的光斑尺寸,(第五次),作 业,解:(1)束腰半径,(2)束腰位置,(3)两镜面上的光斑尺寸分别为:,.欲设计一对称光学谐振腔,波长=0.m,两反射镜间距m,如选择凹面镜曲率半径R=L,试求镜面上的光斑尺寸。若保持L不变,选择RL,并使镜面上的光斑尺寸为0.3cm,问此时镜的曲率半径和腔中心光斑尺寸多大?,(1)镜面光斑尺寸(此时可把它看作对称共焦腔),(2)此时不能当作对称共焦腔,但是仍然是对称光学谐振腔,只是,镜面光斑尺寸为(舍去一个与L近似相等的解):,解:,(3),1.试利用往返矩阵证明对称共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。,证明:,2试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。,解:,3.今有一平面镜和一R=1m的凹面镜,问:应如何构成一平凹稳定腔以获得最小的基模远场角,作 业(不交)1.请做第二章小结.2.将以前各次作业题整理好.,