教材总体及有理数介绍.ppt
人教版义务教育教科书数学(七九年级)修订情况介绍,新中国教育出版事业从这里开始,人民教育出版社中学数学室 李海东,教科书结构体系的修订修订中重点关注的一些问题“有理数”修订情况介绍,修订原则:关注数学的科学性、教学的合理性,两者兼顾。教材体系保持相对稳定,适当调整,考虑使用教 材的惯性,一、教科书体系的修订,1.数与代数,一次函数后移,使学生学习函数的难点移后。二次函数提前,加强与一元二次方程的联系。反比例函数移后,便于学生理解涉及的一些物理等相关知识。,二次根式提前,便于解决勾股定理中根式化简等问题。分式提前,体现与整式的联系,便于加强学生的运算能力。,实数提前,便于学生理解点与实数对的一一对应,以及不等式的解集。,2.图形与几何“三角形”与“全等三角形”“轴对称”直接连接,加强知识的整体性与连贯性。七上 几何图形初步 七下 相交线与平行线 平面直角坐标系 八上 三角形 全等三角形 轴对称 八下 勾股定理 平行四边形 九上 旋转 圆 九下 相似 锐角三角函数 投影与视图,3.统计与概率数据的收集、整理与描述(七年级下)删分层抽样数据的分析(八年级下)概率初步(九年级上)4.综合与实践 数学活动 课题学习“镶嵌”变为选学内容增加课题学习“最短路径问题”(八上轴对称)删去课题学习“重心”删去课题学习“键盘上字母的排列规律”数学活动调整(简单或不易完成的),修订章引言、章小结重视学习方法的引导,加强教材的思想性加强探究,呈现合理的探究过程推理证明的处理,二、修订中重点关注的一些问题,1.修订章引言、章小结 引言是全章的起始、序曲,是全章内容的引导性材料,具有先行组织者的重要作用。好的引言,对于加强基本思想教学、培养发现和提出问题的能力等都有重要作用。引言的主要内容 1.本章内容的引入。借助适当的问题情境(实际的或数学内部的)引入本章内容。2.本章内容的概述。使学生了解本章内容的概貌。3.本章方法的引导。使学生了解本章的主要数学思想方法和学习(研究)方法。,例:有理数的引言,2.修订章小结 小结是对全章内容的梳理,是对本章内容所反映的主要思想方法归纳概括。小结对于提高教材的思想性,帮助学生“由厚到薄”地再认识本章内容,以及帮助教师提升教学的“立意”,都有重要作用。小结的主要内容(1)本章知识结构图。以框图形式表示本章知识要点、发展脉络和相互联系。可以是结构图(本章知识结构),也可以是流程图(本章内容展开过程)。(2)回顾与思考。“回顾”是对本章内容的整体概述,阐述本章内容之间、本章内容与其他内容之间的联系,揭示本章内容反映的思想方法、研究方法等。“思考”是以问题形式引导学生回忆、总结全章内容,深化对本章核心内容及其反映的数学思想方法的理解。,重点修改的方面修订各章知识结构图,突出本章知识要点、发展脉络和相互联系;突出内容反映的思想方法。突出“思想性”,增加对主要内容及其反映的思想方法进行提炼与概括的内容,使小结体现全章思想的“点睛”作用。例如,在“一元一次方程”“不等式与不等式组”的小结中指出方程(不等式)是一种重要刻画相等(不等)关系的数学模型,“相交线与平行线”的小结,揭示研究几何图形的基本思路和方法等。修订小结中的思考问题,在重点、难点和关键上提出有思考力度的、具体的问题,深化学生对本章核心内容及其反映的数学思想方法的理解。“思考”中的问题注意与新增的概述部分协调,做到前后呼应。,例:“整式的乘法与因式分解”小结本章我们类比数的乘法学习了整式的乘法整式的乘法主要包括幂的运算性质、单项式的乘法、多项式的乘法等利用除法是乘法的逆运算,学习了简单的整式除法并学习了因式分解这种与整式的乘法相反方向的变形它们都是进一步学习的重要基础由于整式中的字母表示数,因此数的运算律和运算性质在整式的运算中仍然成立在整式的乘法中,多项式的乘法要利用分配律转化为单项式的乘法,而单项式的乘法又要利用交换律和结合律转化为幂的运算因此,幂的运算是基础,单项式的乘法是关键整式的除法也与此类似,因式分解是与整式的乘法方向相反的变形整式的乘法是把几个整式相乘,得到一个新的整式;而因式分解是把一个多项式化为几个整式相乘知道了这种关系,不仅有助于理解因式分解的意义,而且也可以把整式乘法的过程反过来,得到分解因式的方法某些具有特殊形式的多项式相乘,可以写成乘法公式的形式,利用它们可以简化运算把乘法公式等号两边交换位置,就得到了分解因式的相应公式,2.重视学习方法的引导,加强教材的思想性加强思想性,有利于学生形成对数学的整体性认识,从而有利于实现数学教学的育人价值。代数内容的编写要体现数、式、方程、函数的发展脉络,要在相关章节(有理数、实数、整式加减、整式乘除、分式、二次根式)体现“从数到式”的研究内容和方法等;在其他内容(几何、概率统计等)的编写中,体现相关学科的研究方法等。具体内容的编写中,注意类比、推广、特殊化等研究方法的渗透与概括,加强研究方法的引导,积累学生的数学活动经验。,例:数式通性 在数与代数领域,有理数及其运算是一切运算系统的基础。将其他运算的对象和数作类比,可以使我们得到很多研究方法方面的启示。数运算(加、乘、指数运算)和逆运算运算律大小关系 式运算(加、乘、指数运算)和逆运算运算律大小关系“式”是用字母代替数的结果。数有整数、分数、指数幂等,式就有整式、分式、根式等;在讨论式的运算时,可以类比数的运算,有系统地运用运算律(特别是分配律)去简化各式各样的代数式和代数关系,归纳地探索、发现、定义和证明各种代数公式、代数定理。式中的“大小关系”就是“式的相等或不等关系”,由此发展出“等式的性质”和“不等式的性质”,也就是考察“式在运算中的不变性”。,在式的研究中,注意与数的概念、运算法则和运算律的类比。在相关章节(有理数、实数、整式加减、整式乘除、分式、二次根式)的小结中,在“概述”部分阐述“从数到式”的研究内容和方法等,特别注意类比、推广、特殊化等研究方法的渗透与概括;在具体内容的编写中,加强思想方法的引导。例如在多项式乘法的基础上讲乘法公式,通过“考察特殊情况,能获得多项式的乘法公式,这些公式可简化代数运算”的引导,让学生自己尝试获得乘法公式,同时也培养了学生的归纳思维。,数式通性整式,数式通性分式,数式通性二次根式,数式通性“整式的乘除与因式分解”小结本章我们类比数的乘法学习了整式的乘法整式的乘法主要包括幂的运算性质、单项式的乘法、多项式的乘法等利用除法是乘法的逆运算,学习了简单的整式除法并学习了因式分解这种与整式的乘法相反方向的变形它们都是进一步学习的重要基础由于整式中的字母表示数,因此数的运算律和运算性质在整式的运算中仍然成立在整式的乘法中,多项式的乘法要利用分配律转化为单项式的乘法,而单项式的乘法又要利用交换律和结合律转化为幂的运算因此,幂的运算是基础,单项式的乘法是关键整式的除法也与此类似,数式通性分式的“小结”分式与分数具有类似的形式,它们也具有类似的性质和运算本章通过与分数进行类比,得出分式的基本性质,引入分式的运算本章还学习了可化为一元一次方程的分式方程的解法,并应用这种分式方程解决简单的实际问题解分式方程的基本思路是先通过去分母将分式方程化归为整式方程,进而求整式方程的解,再经过检验得到分式方程的解 请你带着下面的问题,复习一下全章的内容吧 1.如何用式子形式表示分式的基本性质和运算法则?通过比较分数和分式的基本性质和运算法则,你有什么认识?类比的方法在本章的学习中起什么作用?2,例:类比的研究问题几何图形的研究线段的比较与角的比较,线段的中点与角的平分线,例:平方差公式一般到特殊的思想方法 某些特殊形式的多项式相乘,可以写成公式的形式,当遇到相同形式的多项式相乘时,就可以直接运用公式写出结果。探究 计算下列多项式的积,你能发现什么规律?(1);(2);(3)上面的几个运算都是形如(ab)的多项式与形如(ab)的多项式相乘,由于 因此,对于具有与此相同形式的多项式相乘,我们可以直接写出运算结果,即 也就是说,两个数的和与这两个数的差的积,等于这两个数的平方差这个公式叫做(乘法的)平方差公式,平方差公式是多项式乘法(ab)(mn)中ma,nb的特殊情形,3.加强探究,呈现合理的探究过程 在教材的展开过程中加强探究性,是积累学生的数学活动经验的需要,也是培养学生发现和提出问题的能力、分析和解决问题的能力的需要。更加注重展现知识的来龙去脉,引导学生的思维活动,给学生一条观察事物(情景)、提出问题、分析问题、解决问题的线索,以增强学生的数学活动经验,利于发现和提出问题的能力、分析和解决问题的能力的培养。随着知识储备的增加,不断加强“探究”的理性思维成分。什么样的过程才是合理的?是不是每个内容都要经历观察、思考(探究)、猜想、证明的完整过程?,例:平行线的性质,例:平行四边形的判定,现在的处理思考 通过前面的学习,我们知道,平行四边形对边相等、对角相等、对角线互相平分。反过来,对边相等、对角相等、对角线互相平分的四边形是不是平行四边形呢?也就是说,平行四边形性质定理的逆命题成立吗?可以证明,逆命题成立,这样我们得到平行四边形的判定定理:下面我们以对角线互相平分为例来进行证明。平行四边形的判定定理与平行四边形的性质定理互为逆定理,也就是说,当条件与结论互换以后,它们仍然成立。思考 我们知道,两组对边分别平行或相等的四边形是平行四边形。如果只考虑四边形的一组对边,那么它们满足什么条件时四边形是平行四边形呢?,例:矩形、菱形、正方形的性质和判定,思考 由于矩形是平行四边形,所以它具有平行四边形的所有性质。但是,它的一个角为直角,它是否具有一般平行四边形不具有的一些特殊性质呢?对于矩形,我们仍然从它的边、角、对角线等方面进行研究,不难证明,矩形还有以下性质:思考 由于菱形是平行四边形,所以它具有平行四边形的所有性质。但是,它的一组邻边相等,它是否具有一般平行四边形不具有的一些特殊性质呢?从判定逆命题角度考虑判定定理前面我们研究了矩形的四个角,知道它们相等。它的逆命题成立吗?即四个角相等的四边形是矩形吗?进一步,三个角相等的四边形是矩形吗?,4.推理与证明的安排直观与推理的结合 使推理成为学生观察、实验、探究得出结论的自然延续,逐步养成严谨的思维习惯。推理论证不仅是证明或推翻猜想,也是发现新结论的重要手段。循序渐进“说点儿理”“说理”“简单推理”“符号表示推理”适时安排,起点早一以贯之,七上“几何图形初步”说点儿理七下“相交线与平行线”说理 简单推理 用符号表示推理八上“三角形”要求学生证明“全等三角形”“轴对称”八下“勾股定理”“平行四边形”九上“旋转”“圆”九下“相似”,一以贯之,循序渐进,适当加强对“推理与证明”的要求 在“相交线与平行线”适当加强推理与证明,结合实例从“说理”到“简单推理”,并正式出现“证明”(让学生看到完整的证明,不要求学生完整证明,要求学生会填空完成一些关键步骤和填理由),注意循序渐进,推理的步骤控制好长度 相关章节对证明的要求适当增加。正式出现“证明”之前,循序渐进给出严格的推理的符号语言。,在图5.1-2中,1与2互补,3也与2互补,由“同角的补角相等”,可以得出1=3同理,2=4这样,我们得到:对顶角相等上面推出“对顶角相等”这个结论的过程,可以写成下面的形式:因为 1与2互补,3与2互补(邻补角的定义),所以 1=3(同角的补角相等),七下对学生的要求,本章主要变化编写时主要考虑的问题对教学的几个建议,三、“有理数”修订情况介绍,本章主要变化,规定 归纳 利用数轴 满足运算律例如,为什么规定(3)(5)=15?希望保持分配律a(b+c)=ab+ac的结果。(3)(5)(3)(05)(3)0(3)5 0(15)15 让(1)(1)1行不行?会出现矛盾:令a1,b1,c1,就会有 1(11)112 而另一方面又有 1(11)100,有理数的乘法法则,原来的处理:利用数轴通过蜗牛运动的例子得出,现在的处理 为了突出体现在具体实例的基础上,归纳给出相关概念、法则的编写思路,从引入负数后的乘法算式分类开始,由两个正数的乘法逐步过渡到“负负得正”。注意在此过程中体现数域扩充过程中,运算法则的一致性,1加强与学生已有经验的联系(1)从学生熟悉的现实问题出发引入有关内容“温度”“方向”“收支”“增长率”难点:用正数、负数表示指定方向变化的量(如负增长、净胜球),编写时主要考虑的问题,(2)在小学对“数及其运算”的基础上展开新内容 小学阶段对于正整数、0、正分数等的意义、运算和运算律的认识经验,可以自然地延伸到有理数的学习中来,教科书特别注意发挥这些经验的作用。负数概念的引入 有理数的加法运算有理数的加法运算律,有理数的加法运算,有理数的加法运算律,关于有理数概念的处理,从数学的严谨性出发,“整数和分数统称为有理数”的说法不对,因为“整数是分母为1的分数”,上一版教科书,“把单位1平均分成若干份,表示这样的一份或几份的数叫做分数”分数分为“真分数”和“假分数”,学生的认识,使学生对有理数概念形成完整认识。这是一种螺旋上升的处理方式。,修订版教科书,渗透数系扩充的思想。在小结中明确“与负数有关的运算,我们都借助绝对值,将它们转化为正数之间的运算”。新数之间的运算原有的数之间的运算(原有的运算律在新的数系中得以保持),数系扩充的思想在数系及其运算的扩充过程中,核心的问题是在添加了一类“新数”后,所引进的新数之间的运算如何归结到原有的数之间的运算而定义运算法则,进而使原有的运算律在新的数系中得以保持。在归纳运算法则时,强调从符号和绝对值两个角度着手;在具体运算中,强调“先确定符号,再算绝对值”;在小结中明确“与负数有关的运算,我们都借助绝对值,将它们转化为正数之间的运算”。,2加强数学思想方法的渗透,“数轴”中的数形结合思想数轴是数形结合的产物。在数轴概念的建立过程中,通过“数轴三要素”的学习渗透数形结合的思想。“0是正数和负数的分界点,原点是数轴的基准点”;“东”与“西”、“左”与“右”等表示了相反方向,它们与数的“负”与“正”正好对应;数轴上,一个点到原点的距离,与一个数的绝对值对应;等。,利用数轴数形结合的研究相关问题 关于原点对称的点相反数 不同的点到原点的距离绝对值 数轴上各点的左右顺序有理数比较大小 利用数轴分析物体两次运动的结果有理数的加法,3加强思考方法的引导,促使学生学会思考、学会学习数学教学的最主要任务是使学生学会思考,培养学生的思维能力,这是由数学的学科性质决定的。“思考”“探究”“归纳”落实“思考方法的引导”,例:“数轴”中的三个图 三次抽象的过程,1做好与前两个学段的衔接前两个学段学过自然数、正分数(即正有理数和0)及其运算的知识,还学过用字母表示数的知识,这些都是学习本章的基础。要做好与以往算术知识和方法的衔接,在原有基础上自然引伸出新的问题和思路。,对教学的几个建议,2把握好教学要求学生对负数及运算的认识不能一蹴而就。教学时,不要操之过急,要给他们接受这些知识的时间。绝对值概念的学习也要有一个循序渐进的过程。数轴上两点之间距离的表示 绝对值不等式 绝对值出现字母并讨论有理数的加、减、乘、除、乘方运算中涉及的数应简单一些,特别是混合运算。课标明确提出“以三步以内为主”。,3采用“归纳式”教学本章教材的编写,从有理数的概念到运算法则和运算律,始终坚持“归纳式”呈现内容。目的:为了体现以数学知识发生发展过程为载体进行“思维的教学”这一数学课程的核心任务。在课堂教学中,要体现好教材的编写意图,为学生安排一个“具体事例观察、试验比较、分类分析、综合抽象、概括”的过程,使学生有机会通过自己的类比、归纳而获得对有理数及其运算的知识。,例:数轴概念的教学关键就是要用好教材的具体实例、学生熟悉的生活事例,引导学生的观察、比较、分析和综合等思维活动,并抽象出“基准点”“方向”和“与基准点的距离”在刻画事物相对位置中的作用,然后再结合负数概念引入过程中,用正、负数表示“相反意义的量”的经验,概括出数轴“三要素”。,原点 0(原点是区分方向的“基准”,0是区分正负的基准)单位长度 1(单位长度是度量线段长度的单位,1是实数单位,“单位”实际上给出了一个度量的统一标准)方向符号(空间中,“由A到B”和“由B到A”是两件不同的事情,其差别由“方向”来标记。A,B 两点“位置差别”的定量化定义,必需且只需用“方向”和“长度”。数轴上,方向有“左”和“右”,可以理解为“相反方向”。负数的引入是应描述现实中的“相反意义的量”之需,确定一个实数,需要“符号”和“绝对值”两个要素,它们正好对应了定量化定义A,B 两点“位置差别”的“方向”和“长度”。),4处理好纸笔运算和用计算器运算的关系本章的核心内容是有理数运算,是训练学生运算能力的重要载体,因此必须把运算技能的熟练作为重要的教学目标。关键是体现好“合理”二字。合理性主要体现在两个方面:一是不能削弱有理数运算的基本要求,二是较复杂的计算、用有理数知识解决实际问题和探索运算规律等提倡用计算器。,5利用好“数学活动”、选学内容 问题的扩展与加深 开阔眼界 增长见识“实验与探究 填幻方”“阅读与思考 中国人最先使用负数”“观察与猜想 翻牌游戏中的数学道理”三个数学活动,“数学活动”的实施 首先要明确“数学活动”属于“综合与实践”课程内容。“综合与实践”是以问题为载体、以学生自主参与为主的学习活动。应认真体会“实践”“综合”的含义。不要把“数学活动”等同于“解题活动”。,一般地,“数学活动”的教学要安排如下几个环节:(1)活动内容的选择;(2)活动的展开过程(要注意学生参与方式的设计,多使用动手实践、自主探究、合作交流等方式);(3)活动过程和结果的展示与评价。,明确问题,设计账本,明确“活动1”中的关键词,如“收”“支”“总收入”“总支出”“总节余”“每日平均支出”“当月”等;明确完成这个活动要用的数学知识,主要是“有理数及其运算”。讨论制作账本的方法,如用表格记录的话,表格中应当包含哪些项目。,实施方案,记录数据 在这个阶段,学生要按照前面设计的方案,将收支数据详实地记录到账本中。展示交流,总结评价 这一环节可以有多种组织方式。安排这个环节的目的是给学生一个表达、展示、交流的机会,分享活动成果和收获的同时,教师可以了解学生在活动中数学应用能力的发展状况,也可以看出学生的数学学习态度。在展示交流中,要注意引导学生对数学活动过程进行全面反思。,教材是重要的教学资源教师是教材发挥作用的关键教材建设需要每一位教师的参与,李海东人民教育出版社中学数学室,