控制工程基础ppt课件第四章频率特性.ppt
,2010年,控制工程基础(第四章),时域瞬态响应法:分析控制系统的直接方法。优点:直观。缺点:分析高阶系统非常繁琐。,频率响应是时间响应的特例,是控制系统对正弦输入信号的稳态响应。频率特性是系统对不同频率正弦输入信号的响应特性。频率特性分析法(频域法)是利用系统的频率特性来分析系统性能的方法,研究的问题仍然是系统的稳定性、快速性和准确性等,是工程上广为采用的控制系统分析和综合的方法。,频率特性分析法是一种图解的分析方法。不必直接求解系统输出的时域表达式,可以间接地运用系统的开环频率特性去分析闭环系统的响应性能,不需要求解系统的闭环特征根。系统的频域指标和时域指标之间存在着对应关系。频率特性分析中大量使用简洁的曲线、图表及经验公式,使得控制系统的分析十分方便、直观。,第四章 控制系统的频率特性,4.1 机电系统频率特性的概念及其基本实验方法,4.2 极坐标图(Nyquist图),4.3 对数坐标图(Bode图),4.4 由频率特性曲线求系统传递函数,4.5 由单位脉冲响应求系统的频率特性,*4.6 对数幅相图(Nichols图),4.7 控制系统的闭环频响,4.8 机械系统动刚度的概念,4.1 频率特性概述,物理意义 频域法是工程上广为采用的系统分析和综合的间接方法。除了电路与频率特性有着密切关系外,在机械工程中机械振动与频率特性也有着密切的关系。,数学依据 傅立叶变换,频率特性的物理背景,RC电路网络正弦输入的稳态响应,已知求稳态时,频率特性的定义,设系统传递函数为。定义系统输出信号的稳态响应相对其正弦输入信号的幅值之比 为系统的幅频特性。,幅频特性描述系统在稳态下响应不同频率的正弦输入时在幅值上的增益特性(衰减或放大)。,定义系统输出信号的稳态响应相对其正弦输入信号的相移为系统的相频特性。,相频特性描述系统在稳态下响应不同频率的正弦输入时在相位上产生的滞后()或超前()特性。,上述定义的幅频特性和相频特性 统称为系统的频率特性,它描述了系统对正弦输入的稳态响应。,当输入为非正弦的周期信号时,其输入可利用傅立叶级数展开成正弦波的叠加,其输出为相应的正弦波输出的叠加,如下图所示。,傅里叶反变换式,傅里叶正变换式,当输入为非周期信号时,可将该非周期信号看做周期 T的周期信号。,傅氏变换与拉氏变换,傅氏正变换式,拉氏正变换式,傅氏变换与拉氏变换是类似的。除了积分下限不同外,只要将 换成,就可将已知的拉氏变换式变成相应的傅氏变换式。,拉氏变换可看作是一种单边的广义的傅氏变换,其积分区间是从 0 到+。函数适合进行拉氏变换的条件比傅氏变换的条件弱一些,因此适合函数的范围也宽一些。大多数机电系统可简单地将拉氏变换 中的 换成 而直接得到相应的傅氏变换 式。,系统的频率特性函数是一种复变函数,可以表示成如下形式:,系统频率特性的表示形式,是 的实部,称为实频特性。是 的虚部,称为虚频特性。,频率特性函数也可以表示成如下形式:,是 的模,称为幅频特性。是 的相角,称为相频特性。,矢量图表示如下:,系统的频率特性函数 可由系统的传递函数 求得。,频率特性的求取解析法,将s平面的复变量 的取值范围限定在虚轴上,即 所得到的传递函数 就是系统的频率响应。频率响应是在 特定情况下的传递函数。,如下图所示系统,其传递函数为 将 代之以,即得到系统的频率特性 函数为,例,例,试求 的幅频特性和相频特性。解:,频率特性的概念:系统对不同频率正弦输入信号的稳态响应特性称为频率特性。2.求取频率特性的解析方法:,4.1节小结,乃奎斯特(H.Nyquist)18891976,美国Bell实验室著名科学家,4.2 极坐标图(乃奎斯特图,或乃氏图),极坐标图是反映频率特性的几何表示。当 从 0 逐渐增长至 时,频率特性 作为一个矢量,其端点在复平面相对应的轨迹就是频率特性的极坐标图。极坐标图也称为乃氏图或乃奎斯特曲线。,4.2.1 典型环节的乃氏图,1.比例环节,2.积分环节,3.微分环节,4.一阶惯性环节,5.二阶振荡环节,令 或 得 为与负虚轴交点。,相角0180,与负虚轴有交点。,6.延迟环节,相角0,与实轴和虚轴有无穷多交点。,(1)写出 和 表达式;(2)分别求出 和 时的;(3)求乃氏图与实轴的交点,可利用 的关系式求出,也可以利用关系式(其中n为整数)求出;(4)求乃氏图与虚轴的交点,可利用 的关系式求出,也可利用关系式(其中n为奇数)求出;(5)必要时画出乃氏图中间几点;(6)勾画出大致曲线。,4.2.2 乃氏图一般作图方法,当 时,当 时,乃氏图与实轴和虚轴有无穷多交点,随着 增加,曲线距离原点越来越近相角越来越负。,例,当 时,当 时,其相角范围从-90-270,因此必有与负实轴的交点。,例,解方程即两边取正切,得所以曲线与负实轴交点的频率为 该交点距原点的距离为,其乃氏图如下图所示:,机电系统的开环频率特性一般可表示为 当=0 时,称该系统为 0 型系统;当=1 时,称该系统为型系统;当=2 时,称该系统为型系统;,系统的型次,各型乃氏图的低频段,乃氏图的高频段,通常,机电系统频率特性分母的阶次大于分子的阶次,故当 时,乃氏图曲线终止于坐标原点处;而当频率特性分母的阶次等于分子的阶次,当 时,乃氏图曲线终止于坐标实轴上的有限值。,一般在系统频率特性分母上加极点,使系统相角滞后;而在系统频率特性分子上加零点,使系统相角超前。,乃氏图的负频段,令 从 增长到 0,相应得出的乃氏图是与 从 0 增长到 得出的乃氏图以实轴对称的。,极坐标图(Nyquist图)的概念,4.2节小结,2.典型环节的Nyquist图,3.Nyquist图作图的一般步骤,4.系统的型次,各型次Nyquist图的特点,伯德(H.W.Bode),19051982,美国Bell实验室著名科学家,4.3 对数坐标图(伯德图),对数坐标图 是将 幅值 对频率的关系和 相位 对频率的关系分别画在两张图上,用半对数坐标纸绘制,频率坐标按对数分度,幅值和相角坐标则以线性分度。对数坐标图也称伯德图(Bode图)。,伯德图幅值 所用的单位 分贝(dB)定义为,幅频特性坐标,若,则称从 到 为十倍频程,以 dec.(decade)表示。,相频特性坐标,典型环节的伯德图,1.比例环节,2.积分环节,二重积分环节,3.一阶惯性环节,在低频段,,在高频段,,用低频段和高频段的两条直线组成的折线近似表示。,横坐标单位为1/T,4.一阶微分环节,在低频段,,在高频段,,5.二阶振荡环节,在低频段,,在高频段,,6.延迟环节,4.3.2 一般系统伯德图作图方法,则,对一般系统,可见,系统幅频特性的伯德图可由各典型环节的幅频特性伯德图叠加得到。,同理,系统相频特性的伯德图亦可用各典型环节的相频特性伯德图叠加得到。,例:,即,该系统可认为由下列五个典型环节组成:,例,L()/dB,(),由此,可以看出伯德图可由如下步骤形成:(1)将系统频率特性化为典型环节频率特性的乘积;(2)根据组成系统的各典型环节确定转角频率及相应斜率,并画近似幅频折线和相频曲线;(3)必要时对近似曲线作适当修正。真正画伯德图时,并不需要先画出各环 节伯德图,可根据静态放大倍数和各环 节时间常数直接画出整个系统伯德图。,对于相同阶次的基本环节,当频率 从 0 变到 时,最小相位的基本环节造成的相移是最小的。,4.3.3 最小相位系统,系统开环传递函数在 S 右半平面上既无极点、又无零点的系统,称为最小相位系统;否则,为非最小相位系统。,最小相位系统的相频特性和幅频特性是一一对应的,知道了系统幅频特性,其相频特性就唯一确定。,最小相位系统幅频、相频特性对应关系,例,设有下列两个系统,其中,系统1为最小相位系统,系统2为非最小相位系统。,两个系统的幅频特性一样,均为,而其相频特性分别为,幅频特性,相频特性,对数坐标图(Bode图)的概念,4.3节小结,2.典型环节的Bode图,3.Bode图作图的一般步骤,4.最小相位系统和非最小相位系统的定义及其特点,许多系统的物理模型很难抽象得很准确,其传递函数很难用纯数学分析的方法求出。对于这类系统,可以通过实验测出系统的频率特性曲线,进而求出系统的传递函数。,由伯德图的作图过程可知,幅频曲线的转折点对应的频率是时间常数的倒数。下面讨论如何确定静态放大倍数。,4.4 由伯德图求系统传递函数,在低频时,很小,可见,0型系统幅频特性伯德图在低频处的高度为,如下图低频段。,低频段高度,可见,如果系统各转角频率均大于1,I 型系统幅频特性伯德图在 处的高度为;如果系统有的转角频率小于1,则首段-20dB/dec.斜率线的延长线与 线的交点高度为。,在低频时,很小,另外,其首段-20dBdec.斜率线或其延长线与0dB线的交点坐标为。,在低频时,很小,可见,如果系统各转角频率均大于1,II 型系统幅频特性伯德图在 处的高度为;如果系统有的转角频率小于1,则首段-40dB/dec.斜率线的延长线与 线的交点高度为。,其首段-40dBdec.斜率线或其延长线与0dB线的交点坐标为。,例,某最小相位系统的开环频响数据如下,试画出其对数幅频特性,并确定其传递函数。,系统的幅频特性曲线:,L()/dB,/rad/s,用折线逼近曲线得:,由 得:,由图测得转角频率:,则:,所以所测系统的传递函数近似为:,例,下图实线是某系统用实验测出的频率特性伯德图,试求改系统的传递函数。,由幅频特性低频段可见,该系统为 0 型系统,且。,由上可知,该系统为二阶。又相频特性小于-180,故系统存在延迟环节。,用折线作为渐近线逼近幅频特性曲线,其高频段斜率为-40dB/dec.,两个转角频率为,系统频率特性具有如下形式:,由图可见,,取,则系统传递函数为,由频率特性求传递函数:,4.4节小结,注意根据相频与幅频特性对应关系确定其是否为最小相位系统。,获取频率特性的方法,(1)如果已知系统的传递函数,可将系统传递函数中的 代之以,即得到系统的频率特性函数。(2)如果已知系统的微分方程,可将输入变量以正弦函数代入,求系统的输出变量的稳态解,输出变量的稳态解与输入正弦函数的复数比即为系统的频率特性函数。(3)可以通过实验的手段求出。,获取频率特性的实验方法,机械角位移正弦函数发生装置,电液正弦位移激振装置,电液正弦位移激振装置工作原理,增益-相位计,传递函数分析仪,4.5 单位脉冲响应求系统频率特性,单位脉冲函数的傅氏变换象函数等于1,即说明 隐含着幅值相等的各种频率。如果对某系统输入一个单位脉冲,则相当于用等单位强度的所有频率去激发系统。,系统单位脉冲响应的傅氏变换即为系统的频率特性。,当 时,系统传函等于其输出象函数,对于渐近稳定的系统,系统的单位脉冲响应随时间增长逐渐趋于零。因此,可以对响应 采样足够多的点,借助计算机,用多点求和的方法即可近似求出系统频率特性,即,为了识别系统的传递函数,我们可以产生一个近似的单位脉冲信号 作为系统的输入,记录系统响应的曲线,则系统的频率特性为,频率特性函数的求取方法:1.根据系统的传递函数求取2.根据系统的微分方程求取3.实验方法:输入不同频率的正弦信号 输入脉冲信号,4.5节小结,4.6 对数幅相特性图(Nichols 图),,美国Taylor仪器公司工程师,二战期间参与MIT雷达及火炮控制研究。,对数幅相特性图(Nichols图)是描述系统频率特性的第三种图示方法。,对数幅相图纵坐标表示频率特性的对数幅值,以分贝为单位;横坐标表示频率特性的相位角。,对数幅相特性图以频率 作为参变量,用一条曲线完整地表示了系统的频率特性。,典型环节的对数幅相图,积分环节,一阶惯性环节,相位超前环节,延迟环节,低频时,高频时,由开环频率特性估计闭环频率特性,对于单位反馈系统,,4.7 系统闭环频率特性,系统开环及闭环幅频特性对照,我们可以利用等 M 圆和等 N 圆由开环频率特性求出闭环频率特性。对于单位反馈系统,设前向通道传递函数为,则其闭环传递函数为,应用开环乃氏图求闭环频率特性,在下图所示的乃奎斯特图上,向量 OA 表示,其中 为 A 点频率。,向量 OA的幅值为,向量 OA 的相角为。,由点 到 A 点的向量 PA 可表示为。,向量OA与PA之比正好表示了闭环频率特性,即,在 处,闭环频率特性的幅值就是向量 OA与 PA 的幅值之比,闭环频率特性的相角就是两向量的相角之差,即夹角,如上图所示。,当系统的开环频率特性确定后,根据上图就可求出闭环频率特性。,类似于地图上等高线的思路,我们可求出闭环频率特性的等幅值轨迹和等相角轨迹,在由乃奎斯特图确定闭环频率特性及系统校正时,这将带来方便。,设闭环频率特性的幅值为,相位角为,闭环频率响应可表示为,设,式中X 和Y 均为实数,则,等幅值轨迹(M 圆),上式两边平方,可得,如果 M=1,由前式可求得 X=-1/2,即为通过点(-1/2,0)且平行虚轴的直线。,该式就是一个圆的方程,其圆心为,半径为,如下图。,如果 M1,上式可化成,在复平面上,等 M 轨迹是一族圆,对于给定的 M 值,可计算出它的圆心坐标和半径。下图表示的是一族等 M 圆。,当M 1时,随着M的增大,M圆的半径减小,最后收敛于点(-1,j0)。当M1时,随着M的减小,M圆的半径亦减小,最后收敛于点(0,j0)。当M=1时,其轨迹是过点(-1/2,j0)且平行于虚轴的直线。,等相角轨迹(N 圆),的相角为,即,设,则,则,下图表示的是一族等 N 圆。,配方整理,可得,由上式可看出,等相角轨迹是一个圆心为,半径为 的圆。,对于给定值的等N 圆,实际上并不是一个完整的圆,而只是一段圆弧。同时,由于与180的正切值是相同的,N 圆对应的具有多值性,例如=-35与=145对应的圆弧是相同的。,应用相同的比例尺,将等M 圆和等N 圆绘制在透明片上,然后再把它覆盖在以相同比例尺绘制的系统开环传递函数乃奎斯特图上,乃奎斯特图与等M圆和等N圆的交点所对应的幅值与相角由M圆和N圆的参数决定,对应的频率由开环乃奎斯特图决定,这样即可求出闭环频率特性。找出 与M圆和N圆的交点,就可绘出闭环频率特性曲线。,仿照上述等M圆和等N圆的思路,在对数幅相特性图上作出等M圆和等N圆,由它们轨迹构成的曲线称为尼柯尔斯图线。,应用开环Nichols图线求闭环频率特性,尼柯尔斯图线对称于-180轴线,每隔360,M 轨线和N 轨线重复一次,且在每个180的间隔上都是对称的。,在由开环频率特性确定闭环频率特性时,应用相同的比例尺,将尼柯尔斯图线绘制在透明片上,然后再把它覆盖在以相同比例尺绘制的系统开环传递函数对数幅相图上,则开环频率特性曲线 与M轨线和N 轨线的交点,就给出了每一频率上闭环频率特性的幅值M 和相角。,若 轨迹与M轨线相切,切点处频率就是谐振频率,谐振峰值由M轨线对应的幅值确定。,一单位反馈系统的开环传递函数为,由于 轨迹是与M=5dB的轨迹相切,所以 闭环频率特性的谐振峰值为,而谐振频率。,此外 与 M=-3dB 轨迹交点的频率在1.21.4rad/s之间,采用插值计算可大致确定闭环截止频率为。,轨迹与 M 轨线和 N 轨线,如图(a)所示。闭环频率特性曲线如图(b)所示。,例,由于 轨迹是与M=5dB的轨迹相切,所以闭环频率特性的谐振峰值为,而谐振频率。,此外 与 M=-3dB 轨迹交点的频率在1.21.4rad/s之间,采用插值计算可大致确定闭环截止频率为,在求取闭环频率特性时,在尼柯尔斯图上画出 的轨迹,由轨迹与M 轨线和N 轨线 的交点,就可得到 的某一 频率下的幅值和相角。,对于非单位反馈系统,其闭环频率特性可写为,非单位反馈系统的闭环频率特性,用 乘以就可得到系统闭环频率特性。,由开环频率特性估计闭环频率特性小结:,一、应用开环Bode图估计闭环频率特性,二、应用开环乃氏图求闭环频率特性,三、应用开环Nichols图求闭环频率特性,系统频域性能指标,开环剪切频率:开环频率特性幅值为 1 对应的频率。,闭环谐振频率:产生谐振峰对应的频率。,闭环谐振峰值:谐振频率处幅值的大小。,闭环截止频率:对数幅频特性的幅值下 降到-3dB时对应的频率。,系统的频率特性为,该式反映了动态作用力 与系统动态变形 之间的关系,如下图所示。,4.8 机械系统动刚度概念,一个典型的由质量-弹簧-阻尼构成的机械系统的质量块在输入力f(t)作用下产生的输出位移为y(t),其传递函数为,实质上 表示的是机械结构的动柔度,也就是它的动刚度 的倒数,即,当 时 即该机械结构的静刚度为 k。,对 求偏导等于零,即 可求出二阶系统的谐振频率,即 将其代入幅频特性,可求出谐振峰值 此时,动柔度最大,而动刚度具有最小值,当 时,我们可以写出动刚度的幅值,其动刚度曲线如下图所示。,由,得二阶系统截止频率为,可见,增加机械结构的阻尼比,能有效提高系统的动刚度。上述有关频率特性、机械阻尼、动刚度等概念及其分析具有普遍意义,并在工程实践中得到了应用。,Matlab 在频率特性分析中的应用,Bode图的绘制,bode(sys)或 bode(sys,w)bode(num,den)或 bode(num,den,w)精确绘制系统的Bode图,其中sys是由函数tf()、zpk()、ss()中任意一个建立的系统模型;num和den分别为系统的分子、分母多项式系数向量;w为希望计算相位、幅值的频率点,需定义为行向量或范围win,wmax。,2.mag,phase=bode(sys,w)或 mag,phase,w=bode(sys)计算系统的幅值mag与相位phase(),可通过公式 Magdb20log(mag)转换为对数幅值。,Nyquist图的绘制,nyquist(sys,w)精确绘制系统的Nyquist图,2.re,im=nyquist(sys,w)或 re,im,w=nyquist(sys)计算系统的实部re与虚部im.,Nichols图的绘制,nichols(sys,w)精确绘制系统的Nichols图,2.mag,phase=nichols(sys,w)或 mag,phase,w=nichols(sys)计算系统的幅值mag与相位phase().,例,-MATLAB Programl1.4-num=50;den=25,2,1;bode(num,den);grid;title(Bode Plot of G(s)=50/(25s2+2s+1),对于系统传递函数下列程序将给出该系统对应的伯德图。,如果希望从 0.01rad/s 到 1000rad/s 画伯德图,可输入下列命令:,w=logspace(-2,3,100);bode(num,den,w);,该命令在 0.01rad/s 到 1000rad/s 之间产生100个在对数刻度上等距离的点。,例,-MATLAB Programl1.6-num=50;den=25,2,1;nyquist(num,den);title(Nyquist Plot of G(s)=50/(25s2+2s+1),对于系统传递函数下列程序将给出该系统对应的乃奎斯图。,编著者董景新 郭美凤 陈志勇李冬梅 刘云峰,