欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    概率图模型导论——概率论与图论相结合.ppt

    • 资源ID:5974339       资源大小:782.54KB        全文页数:30页
    • 资源格式: PPT        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    概率图模型导论——概率论与图论相结合.ppt

    第十讲 概率图模型导论 Chapter 10 Introduction to Probabilistic Graphical Models,Weike Pan,and Congfu Xupanweike,Institute of Artificial Intelligence College of Computer Science,Zhejiang UniversityOctober 12,2006,浙江大学计算机学院人工智能引论课件,References,An Introduction to Probabilistic Graphical Models.Michael I.Jordan.http:/www.cs.berkeley.edu/jordan/graphical.html,Outline,PreparationsProbabilistic Graphical Models(PGM)Directed PGMUndirected PGMInsights of PGM,Outline,PreparationsPGM“is”a universal modelDifferent thoughts of machine learningDifferent training approachesDifferent data typesBayesian FrameworkChain rules of probability theoryConditional IndependenceProbabilistic Graphical Models(PGM)Directed PGMUndirected PGMInsights of PGM,Different thoughts of machine learning,Statistics(modeling uncertainty,detailed information)vs.Logics(modeling complexity,high level information)Unifying Logical and Statistical AI.Pedro Domingos,University of Washington.AAAI 2006.Speech:Statistical information(Acoustic model+Language model+Affect model)+High level information(Expert/Logics),Different training approaches,Maximum Likelihood Training:MAP(Maximum a Posteriori)vs.Discriminative Training:Maximum Margin(SVM)Speech:classical combination Maximum Likelihood+Discriminative Training,Different data types,Directed acyclic graph(Bayesian Networks,BN)Modeling asymmetric effects and dependencies:causal/temporal dependence(e.g.speech analysis,DNA sequence analysis)Undirected graph(Markov Random Fields,MRF)Modeling symmetric effects and dependencies:spatial dependence(e.g.image analysis),PGM“is”a universal model,To model both temporal and spatial data,by unifyingThoughts:Statistics+LogicsApproaches:Maximum Likelihood Training+Discriminative Training Further more,the directed and undirected models together provide modeling power beyond that which could be provided by either alone.,Bayesian Framework,What we care is the conditional probability,and its is a ratio of two marginal probabilities.,A posteriori probability,Likelihood,Priori probability,Class i,Normalization factor,Observation,Problem description Observation Conclusion(classification or prediction),Bayesian rule,Chain rules of probability theory,Conditional Independence,Outline,PreparationsProbabilistic Graphical Models(PGM)Directed PGMUndirected PGMInsights of PGM,PGM,Nodes represent random variables/statesThe missing arcs represent conditional independence assumptions The graph structure implies the decomposition,Directed PGM(BN),Representation,Conditional Independence,Probability Distribution,Queries,Implementation,Interpretation,Probability Distribution,Definition of Joint Probability Distribution,Check:,Representation,Graphical models represent joint probability distributions more economically,using a set of“local”relationships among variables.,Conditional Independence(basic),Assert the conditional independence of a node from its ancestors,conditional on its parents.,Interpret missing edges in terms of conditional independence,Conditional Independence(3 canonical graphs),Classical Markov chain“Past”,“present”,“future”,Common causeY“explains”all the dependencies between X and Z,Marginal Independence,Common effect Multiple,competing explanation,Conditional Independence,Conditional Independence(check),One incoming arrow and one outgoing arrow,Two outgoing arrows,Two incoming arrows,Check through reachability,Bayes ball algorithm(rules),Outline,PreparationsProbabilistic Graphical Models(PGM)Directed PGMUndirected PGMInsights of PGM,Undirected PGM(MRF),Representation,Conditional Independence,Probability Distribution,Queries,Implementation,Interpretation,Probability Distribution(1),CliqueA clique of a graph is a fully-connected subset of nodes.Local functions should not be defined on domains of nodes that extend beyond the boundaries of cliques.Maximal cliquesThe maximal cliques of a graph are the cliques that cannot be extended to include additional nodes without losing the probability of being fully connected.We restrict ourselves to maximal cliques without loss of generality,as it captures all possible dependencies.Potential function(local parameterization):potential function on the possible realizations of the maximal clique,Probability Distribution(2),Maximal cliques,Probability Distribution(3),Joint probability distribution Normalization factor,Boltzman distribution,Conditional Independence,Its a“reachability”problem in graph theory.,Representation,Outline,PreparationsProbabilistic Graphical Models(PGM)Directed PGMUndirected PGMInsights of PGM,Insights of PGM(Michael I.Jordan),Probabilistic Graphical Models are a marriage between probability theory and graph theory.A graphical model can be thought of as a probabilistic database,a machine that can answer“queries”regarding the values of sets of random variables.We build up the database in pieces,using probability theory to ensure that the pieces have a consistent overall interpretation.Probability theory also justifies the inferential machinery that allows the pieces to be put together“on the fly”to answer the queries.In principle,all“queries”of a probabilistic database can be answered if we have in hand the joint probability distribution.,Insights of PGM(data structure&algorithm),A graphical model is a natural/perfect tool for representation(数据结构)andinference(算法).,Thanks!,

    注意事项

    本文(概率图模型导论——概率论与图论相结合.ppt)为本站会员(sccc)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开