常考问题8平面向量的线性运算及综合应用.ppt
常考问题8平面向量的线性运算及综合应用,真题感悟 考题分析,热点与突破,规律方法 求解向量的夹角,关键是正确求出两向量的数量积与模本例中有两种解法,其一利用已知向量所满足的条件和向量的几何意义求解,其二构造三角形,将所求夹角转化为三角形的内角求解,更为直观形象,规律方法 在平面向量与三角函数的综合问题中,一方面用平面向量的语言表述三角函数中的问题,如利用向量平行、垂直的条件表述三角函数式之间的关系,利用向量模表述三角函数之间的关系等;另一方面可以利用三角函数的知识解决平面向量问题在解决此类问题的过程中,只要根据题目的具体要求,在向量和三角函数之间建立起联系,就可以根据向量或者三角函数的知识解决问题,审题示例(四)突破有关平面向量问题的思维障碍,图1,图2,答案D,方法点评以上根据向量数与形的基本特征,结合题目中的选项以及直角三角形的条件,从三个方面提出了不同的解法,涉及向量的基本运算、坐标运算等相关知识,在寻找解题思路时,应牢牢地把握向量的这两个基本特征,