欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    工程力学37-d20b(例题).ppt

    • 资源ID:5971076       资源大小:905KB        全文页数:40页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    工程力学37-d20b(例题).ppt

    工程力学(C),北京理工大学理学院力学系 韩斌,(37),(下册),20 动量原理,20.5 动量矩,20.5.1.质点的动量矩,质点的动量对某点之矩,(20.17),若在点O建立直角坐标系Oxyz,则,x,y,z为质点的坐标,,,分别为质点的速度 在x,y,z轴上的投影。,(20.18),(类比于力对点之矩、力对轴之矩),其中,质点动量对x,y,z轴之矩分别为:,(20.18),(20.19),质点动量对任意 l 轴之矩:,其中O为l 轴上任意一点。,(20.20),显然,质点对点的动量矩是一个定位矢量,而质点对轴的动量矩是一个代数量。,当质点作平面运动时,动量对平面内某点O之矩或对Oz轴之矩均为:,(20.21),20.5.2.质点系的动量矩,设质点系中质点 相对于某一固定点O的矢径为,,动量为。,(20.22),质点系对某固定点O的动量矩 为:,1.质点系对固定点、固定轴的动量矩,质点系对某一固定轴 l 的动量矩 为:,(20.23),(20.24),同理,质点系平面运动时,质点系动量对平面内某点O之矩或对Oz轴之矩均为:,2.质点系对动点的动量矩,设在惯性参考系中有任意一动点A,其速度为。,固连于动点A建立平移直角坐标系,,(20.25),(20.26),将质点系中各质点的绝对动量 对动点A的矩的矢量和定义为质点系对动点A的绝对动量矩,用 表示,即:,将质点系中各质点的相对动量 对动点A的矩的矢量和定义为质点系对动点A的相对动量矩,用 表示,即:,(20.27),质点系对动点的绝对动量矩和相对动量矩的关系:,将式(20.25)代入式(20.26):,(20.28),由质点系质心C相对于动点A的矢径公式 可得:,故质点系对动点的绝对动量矩和相对动量矩的关系为:,其中 为质点系质心C在动系中的相对坐标,为动点的绝对速度。,(20.29),(20.30),质点系对质心的动量矩,无论是在固定坐标系还是在质心平移坐标系中计算都是相同的。,故质点系对不同的A,O两点的动量矩的关系为:,(20.31),质点系对某点的动量矩不等于质点系动量对该点之矩!,即,(见书上例22.4),3.对惯性系中不同的A,O两点的动量矩之间关系,类比于力对不同两点的力矩之间的关系,,力对A,O两点之矩关系为,20.5.3 刚体的动量矩,1.平移刚体的动量矩,当刚体作平移时,建立质心平移坐标系,各质点的相对速度,故,(20.32),平移刚体对任意固定点A的动量矩为:,(20.33),平移刚体对任意确定点A的动量矩等于将平移刚体的质量视为全部集中在质心C上时对点A的动量矩。,当平移刚体作平面曲线运动时,对该平面内任一点的动量矩可视为代数量。,2.定轴转动刚体的动量矩,定轴转动刚体对定点O的动量矩为,(20.34),(20.34),故,定轴转动的刚体对转轴上任意点的动量矩矢量一般不沿转轴的方向。,特别,当转轴 z 轴为刚体的惯量主轴时,有,动量矩矢量沿转轴方向,也可用代数量表示:,例如,刚体作平面定轴转动,转轴垂直于刚体的质量对称面时。,3.一般平面运动刚体的动量矩,建立惯性参考空间中的定系Oxyz和质心平移坐标系,,(20.36),使三对坐标轴分别平行,且使,轴垂直于刚体的运动平面,则一般平面运动刚体相对该平移坐标系为绕 轴的定轴转动:,若一般平面运动刚体的运动平面为其质量对称面,则 轴为刚体对点C的惯量主轴,即,上式变为,(20.37),式中 为一般平面运动刚体对 的转动惯量。,(20.38),也可视为代数量,(20.37),若对该刚体运动平面上的任意固定点A,则有:,对任意固定点A,则有:,(20.40),(20.39),例 题 20-6,20 动量原理,例题,求系统对转轴O点的动量矩。,解:,轮O定轴转动,块B平动,,(负号表示转向为),例 题 20-7,20 动量原理,例题,均质圆柱,半径为r,质量为m,绕有细绳,A端固定,圆柱质心C以速度vC向下运动,求圆柱对质心C及定点A的动量矩。,解:,圆柱作一般平面运动,(),若建立质心平移坐标系,则轮子的相对运动为绕质心的定轴转动,(负号表示),例 题 20-8,20 动量原理,例题,圆盘O半径为r,质量m,以角速度转动,均质杆AB质量为m,长为2r,滑块B质量为m,在水平轨道内运动,A,B处为铰接,某瞬时杆AB处于水平位置,求此瞬时系统的动能,动量,对O点的动量矩。,例 题 20-8,20 动量原理,例题,解:,圆盘为定轴转动,滑块为平动,杆为一般平面运动,,杆AB此瞬时为平动,系统该时刻的动能:,系统该时刻的动量:,例 题 20-8,20 动量原理,例题,系统该瞬时对点O的动量矩:,(),注意:系统该瞬时的动能、动量、动量矩都是特殊位置的量,不可求导!,20.6 动量矩定理,20.6.1 质点的动量矩定理,质点对固定点的动量矩定理,设质量为 的质点D对固定点O的矢径为,作用其上的合力为,质点对某一固定点的动量矩对时间的一阶导数等于作用于其上的合力对同一点的矩。,(20.41),质点系的动量矩定理,1.质点系对固定点的动量矩定理,(20.42),(20.43),质点系对某一固定点的动量矩对时间的一阶导数等于作用于其上的外力系对同一点的主矩。,质点系对某一固定轴的动量矩对时间的一阶导数等于作用于其上的外力系对同一轴的矩。,式(20.43)为一矢量式,它可以向过点O的某一固定直角坐标轴(如z轴)上投影:,(20.44),若质点系作平面运动,O点为平面内一点,可取为代数量:,均以逆时针转动为正,质点系对固定轴的动量矩定理,(20.44),质点系对固定点的动量矩定理,2.质点系对动点的动量矩定理,(20.46),任选动点A,建立定坐标系及固连于动点A的平移动坐标系,由对动点A的绝对、相对动量矩之关系式(20.29):,求导:,求导:,又:,质点系对动点A的绝对、相对动量矩导数之关系,设点O为惯性空间中某一固定点,,由O,A两点的动量矩之间关系:,其中,求导:,由对定点O的动量矩定理,动量定理的微分形式,及,得:,又,(20.47),由式(20.46)和(20.47)得到,(20.46),由此可见,质点系对动点的动量矩定理形式复杂,通常,对动点的动量矩定理只用其特例:,(1)取动点A为质点系的质心C,(20.49),质点系对质心的动量矩定理,(2)当动点A的加速度 时,即固连于动点A的平移动系也为一惯性系(A点在该惯性系中为一定点):,(20.50),如果动点是任意选定的,动点的速度、加速度一般未知,故对动点的动量矩定理的一般形式(20.47)和(20.48)并不常用,经常使用的是质点系对质心的动量矩定理(20.49)。,对刚体、刚体系,动量矩定理常取以下形式:,小结,3.有质量对称面的一般平面运动刚体的动量矩定理的表达式,若所研究的质点系为一个具有质量对称面的刚体,作用了与质量对称面重合的平面力系,在其质量对称面内作平面运动。,设A为刚体运动平面内某一定点,则该刚体对A点的相对动量矩为,(20.51),为刚体对Az轴的转动惯量,是一个常数;为该刚体运动的角速度。,为刚体运动的角加速度。,由对动点的相对动量矩定理,下面研究式(20.52)的几种特殊情形:,(1)若点A固定不动(记为O点),则刚体绕O轴作定轴转动,则有:,(20.53),(2)若点A取为刚体的质心C,则有:,(20.54),(3)若在某一瞬时,点A为该刚体的速度瞬心P,则有:,(20.55),(20.52),式(20.55)与式(20.53)的形式不同,反映了瞬时定轴转动与定轴转动的差别。,但若在不同瞬时,平面运动刚体的速度瞬心P与刚体质心C的距离 恒等于某一常数,则,,求导得,根据平面运动刚体的两点加速度关系:,(20.56),(20.55),(20.53),对固定点O,对速度瞬心P,一般地说,也不与 平行,所以 故一般,将上式沿图示 轴(其正向与 相同)投影得到,(20.57),因PC与 轴垂直,说明,于是,当平面运动刚体的速度瞬心P与刚体质心C的距离恒保持不变时,平面运动刚体对速度瞬心的动量矩定理才具有定轴转动的动量矩定理或对质心的动量矩定理同样简单的形式。,(20.56),例如:均质圆盘沿水平地面或固定不动曲面作平面纯滚动;均质直杆的两端分别沿在同一平面内相互垂直的两条固定直线运动,刚体的速度瞬心与其质心的距离恒保持不变。,在动力学中,将一般平面运动刚体的基点选在质心,根据质心运动定理和对质心的动量矩定理,建立平面运动刚体的运动微分方程,形式最简单,且不易出错。,动力学,质心运动定理,相对于质心的动量矩定理,(21.59),20.6.3 质点系的动量矩守恒定律,若外力系对某固定点O的主矩为零,即,则,若外力系对质点系质心C的主矩为零,即,则,若外力系对某固定轴 l 的矩为零,即,则,若外力系对过质心的某轴 l 的矩为零,即,则,

    注意事项

    本文(工程力学37-d20b(例题).ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开