圆的对称性一.ppt
课题:,垂直于弦的直径,?,复习提问:,1、什么是轴对称图形?我们在直线形中学过哪些轴对称图形?,如果一个图形沿一条直线对折,直线两旁的部分能够互相重合,那么这个图形叫轴对称图形。如线段、角、等腰三角形、矩形、菱形、等腰梯形、正方形,2、我们所学的圆是不是轴对称图形呢?,圆是轴对称图形,经过圆心的每一条直线都是它们的对称轴,看一看,AEBE,AEBE,动动脑筋,叠 合 法,垂径定理,垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。,题设,结论,(1)过圆心(2)垂直于弦,(3)平分弦(4)平分弦所对的优弧(5)平分弦所对的劣弧,讨论,(1)过圆心(2)垂直于弦(3)平分弦(4)平分弦所对优弧(5)平分弦所对的劣弧,(3)(1),(2)(4)(5),(2)(3),(1)(4)(5),(1)(4),(3)(2)(5),(1)(5),(3)(4)(2),(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧,命题(1):平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,已知:CD是直径,AB是弦,并且CD平分AB,求证:CDAB,ADBD,ACBC,命题(2):弦的垂直平分线经过圆心,并且平分弦所对的两条弧,已知:AB是弦,CD平分AB,CD AB,求证:CD是直径,ADBD,ACBC,命题(3):平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧,已知:CD是直径,AB是弦,并且ADBD(ACBC)求证:CD平分AB,ACBC(ADBD)CD AB,.,O,C,A,E,B,D,C,推论(1),(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧,(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对和的另一条弧,练习1、“平分弦的直径垂直于弦,并且平分弦所对的两条弧”这句话对吗?为什么?(在推论1(1)中,为什么要附加“不是直径”这一条件?),巩固练习,按图填空:在O中,(1)若MNAB,MN为直径,则_,_,_;(2)若ACBC,MN为直径,AB不是直径,则则_,_,_;(3)若MNAB,ACBC,则_,_,_;(4)若=,MN为直径,则_,_,_,练习2,垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。,推论(1),(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧,(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧,垂径定理,记忆,根据垂径定理与推论可知对于一个圆和一条直线来说。如果具备,(1)过圆心(2)垂直于弦(3)平分弦(4)平分弦所对的优弧(5)平分弦所对的劣弧,上述五个条件中的任何两个条件都可以推出其他三个结论,注意,判断,(1)垂直于弦的直线平分弦,并且平分弦所对的弧.(),(2)弦所对的两弧中点的连线,垂直于弦,并且经过圆心.(),(3)圆的不与直径垂直的弦必不被这条直径平分.(),(4)平分弦的直径垂直于弦,并且平分弦所对的两条弧(),(5)圆内两条非直径的弦不能互相平分(),例1 如图,已知在O中,弦AB的长为8厘米,圆心O到AB的距离为3厘米,求O的半径。,解:连结OA。过O作OEAB,垂足为E,则OE3厘米,AEBE。AB8厘米 AE4厘米 在RtAOE中,根据勾股定理有OA5厘米 O的半径为5厘米。,讲解,例2 已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点。求证:ACBD。,证明:过O作OEAB,垂足为E,则AEBE,CEDE。AECEBEDE。所以,ACBD,E,讲解,讲解,推论(1),(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧,(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对和的另一条弧,推论(2),圆的两条平行弦所夹的弧相等,小结:,解决有关弦的问题,经常是过圆心作弦的垂线,或作垂直于弦的直径,连结半径等辅助线,为应用垂径定理创造条件。,学生练习,已知:AB是O直径,CD是弦,AECD,BFCD求证:ECDF,1300多年前,我国隋代建造的赵州石拱桥的桥拱是圆弧形,它的跨度(弧所对的弦的长)为37.4米,拱高(弧中点到弦的距离,也叫弓形的高)为7.2米,求桥拱的半径(精确到0.1米),已知:O的半径为5,弦ABCD,AB=6,CD=8.求:AB与CD间的距离.(让学生画图),课堂作业:,P94 1、2,谢谢观看,