欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    《高等数学教学资料汇编》d5-习题.ppt

    • 资源ID:5904921       资源大小:1.03MB        全文页数:28页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    《高等数学教学资料汇编》d5-习题.ppt

    ,习题课,一、与定积分概念有关的问题的解法,机动 目录 上页 下页 返回 结束,二、有关定积分计算和证明的方法,定积分及其相关问题,第五章,一、与定积分概念有关的问题的解法,1.用定积分概念与性质求极限,2.用定积分性质估值,3.与变限积分有关的问题,机动 目录 上页 下页 返回 结束,例1.求,解:因为,时,所以,利用夹逼准则得,解:将数列适当放大和缩小,以简化成积分和:,已知,利用夹逼准则可知,(考研98),例2.求,机动 目录 上页 下页 返回 结束,练习:1.,求极限,解:,原式,2.求极限,提示:,原式,左边,=右边,机动 目录 上页 下页 返回 结束,例3.,估计下列积分值,解:因为,即,机动 目录 上页 下页 返回 结束,例4.证明,证:令,则,令,得,故,机动 目录 上页 下页 返回 结束,例5.,设,在,上是单调递减的连续函数,,试证,都有不等式,证明:显然,时结论成立.,(用积分中值定理),当,时,故所给不等式成立.,机动 目录 上页 下页 返回 结束,明对于任何,例6.,解:,且由方程,确定 y 是 x 的函数,求,方程两端对 x 求导,得,令 x=1,得,再对 y 求导,得,机动 目录 上页 下页 返回 结束,故,例7.,求可微函数 f(x)使满足,解:等式两边对 x 求导,得,不妨设 f(x)0,则,机动 目录 上页 下页 返回 结束,注意 f(0)=0,得,机动 目录 上页 下页 返回 结束,例8.求多项式 f(x)使它满足方程,解:令,则,代入原方程得,两边求导:,可见 f(x)应为二次多项式,设,代入 式比较同次幂系数,得,故,机动 目录 上页 下页 返回 结束,再求导:,二、有关定积分计算和证明的方法,1.熟练运用定积分计算的常用公式和方法,2.注意特殊形式定积分的计算,3.利用各种积分技巧计算定积分,4.有关定积分命题的证明方法,思考:下列作法是否正确?,机动 目录 上页 下页 返回 结束,例9.求,解:令,则,原式,机动 目录 上页 下页 返回 结束,例10.求,解:,机动 目录 上页 下页 返回 结束,例11.选择一个常数 c,使,解:令,则,因为被积函数为奇函数,故选择 c 使,即,可使原式为 0.,机动 目录 上页 下页 返回 结束,例12.设,解:,机动 目录 上页 下页 返回 结束,例13.证明恒等式,证:令,则,因此,又,故所证等式成立.,机动 目录 上页 下页 返回 结束,例14.,试证,使,分析:,要证,即,故作辅助函数,机动 目录 上页 下页 返回 结束,至少存在一点,证明:令,在,上连续,在,至少,使,即,因在,上,连续且不为0,从而不变号,因此,故所证等式成立.,机动 目录 上页 下页 返回 结束,故由罗尔定理知,存在一点,思考:本题能否用柯西中值定理证明?,如果能,怎样设辅助函数?,提示:,设辅助函数,例15 目录 上页 下页 返回 结束,例15.设,证:设,且,试证:,则,故 F(x)单调不减,即 成立.,机动 目录 上页 下页 返回 结束,例16.,设函数 f(x)在a,b 上连续,在(a,b)内可导,且,(1)在(a,b)内 f(x)0;,(2)在(a,b)内存在点,使,(3)在(a,b)内存在与 相异的点,使,(03考研),机动 目录 上页 下页 返回 结束,证:(1),由 f(x)在a,b上连续,知 f(a)=0.,所以f(x),在(a,b)内单调增,因此,(2)设,满足柯西中值定理条件,于是存在,机动 目录 上页 下页 返回 结束,即,(3)因,在a,上用拉格朗日中值定理,代入(2)中结论得,因此得,机动 目录 上页 下页 返回 结束,例1.求抛物线,在(0,1)内的一条切线,使它与,两坐标轴和抛物线所围图形的面积最小.,解:设抛物线上切点为,则该点处的切线方程为,它与 x,y 轴的交点分别为,所指面积,机动 目录 上页 下页 返回 结束,且为最小点.,故所求切线为,得 0,1 上的唯一驻点,机动 目录 上页 下页 返回 结束,例2.设非负函数,曲线,与直线,及坐标轴所围图形,(1)求函数,(2)a 为何值时,所围图形绕 x 轴一周所得旋转体,解:(1),由方程得,面积为 2,体积最小?,即,故得,机动 目录 上页 下页 返回 结束,又,(2)旋转体体积,又,为唯一极小点,因此,时 V 取最小值.,机动 目录 上页 下页 返回 结束,

    注意事项

    本文(《高等数学教学资料汇编》d5-习题.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开