欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    《高等数学教学课件汇编》d8-6方向导数与梯度.ppt

    • 资源ID:5904908       资源大小:766.50KB        全文页数:40页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    《高等数学教学课件汇编》d8-6方向导数与梯度.ppt

    8.6 方向导数与梯度,一、方向导数,二、梯度,偏导数反映的是函数在一点沿坐标轴方向的变化率,但在有些问题中需要考虑函数沿其它方向的变化率。,因此在本节引进方向导数的概念来确定函数在一点沿着任一方向的变化率.,讨论函数 在一点P沿某一方向的变化率问题,一、方向导数的定义,(如图),记为,1.若 z=f(X)=f(x,y)在 P=(x,y)处偏导存在.,则在 点P 处沿 x 轴正向的方向导数,注:,2.若 z=f(X)=f(x,y)在 P=(x,y)处偏导存在.,则在 点P 处沿 x 轴负向的方向导数,同样可得沿 y 轴正向的方向导数为 f y(x,y),而沿 y 轴负方向的方向导数为 f y(x,y).,证明,由于函数可微,则增量可表示为,两边同除以,得到,故有方向导数,解,推广可得三元函数方向导数的定义,方向余弦,例2.求函数,在点 P(1,1,1)沿向量,的方向导数.,解:向量 l 的方向余弦为,方向导数反映函数在一点沿某一方向的变化率。,而函数在一点有无穷多个方向导数。,二、梯度的概念,结论,类似于二元函数,此梯度也是一个向量,其方向与取得最大方向导数的方向一致,其模为方向导数的最大值.,梯度的概念可以推广到三元函数,解,等高线,等高线的画法,等高线的画法,等高线的画法,等高线的画法,等高线的画法,等高线的画法,等高线的画法,等高线的画法,等高线的画法,等高线,等高线,梯度为等高线上的法向量,梯度的几何意义,等量面:曲面 f(x,y,z)c称为函数uf(x,y,z)的等量面 函数uf(x,y,z)在点P(x,y,z)的梯度的方向与过点P 的等量面 f(x,y,z)c在这点的法线的一个方向相同,且从数值较低的等量面指向数值较高的等量面,而梯度的模等于函数在这个法线方向的方向导数,解一,用方向导数计算公式,即要求出从 x 轴正向沿逆时针转到内法线方向的转角,在,两边对x 求导,解得,(切线斜率),故法线斜率为,内法线方向的方向余弦为,的等高线为z=0,解二,用梯度,z=0,z=1/2,故,z=0,z=1/2,

    注意事项

    本文(《高等数学教学课件汇编》d8-6方向导数与梯度.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开