《高等数学教学课件汇编》d2-1导数的概念.ppt
第二章,微积分学的创始人:,德国数学家 Leibniz,导数和微分都是描述物质运动的工具,(从微观上研究函数),导数与微分,导数思想最早由法国,数学家 Ferma 在研究,极值问题中提出.,英国数学家 Newton,一、引例,二、导数的定义,三、导数的几何意义,四、函数的可导性与连续性的关系,五、单侧导数,第一节,机动 目录 上页 下页 返回 结束,导数的概念,第二章,一、引例,1.变速直线运动的速度,设描述质点运动位置的函数为,则 到 的平均速度为,而在 时刻的瞬时速度为,自由落体运动,机动 目录 上页 下页 返回 结束,2.曲线的切线斜率,曲线,在 M 点处的切线,割线 M N 的极限位置 M T,(当 时),割线 M N 的斜率,切线 MT 的斜率,机动 目录 上页 下页 返回 结束,两个问题的共性:,瞬时速度,切线斜率,所求量为函数增量与自变量增量之比的极限.,类似问题还有:,加速度,角速度,线密度,电流强度,是速度增量与时间增量之比的极限,是转角增量与时间增量之比的极限,是质量增量与长度增量之比的极限,是电量增量与时间增量之比的极限,变化率问题,机动 目录 上页 下页 返回 结束,二、导数的定义,定义1.设函数,在点,存在,并称此极限为,记作:,即,则称函数,若,的某邻域内有定义,机动 目录 上页 下页 返回 结束,运动质点的位置函数,在 时刻的瞬时速度,曲线,在 M 点处的切线斜率,说明:在经济学中,边际成本率,边际劳动生产率和边际税率等从数学角度看就是导数.,机动 目录 上页 下页 返回 结束,若上述极限不存在,在点 不可导.,若,也称,在,若函数在开区间 I 内每点都可导,此时导数值构成的新函数称为导函数.,记作:,注意:,就说函数,就称函数在 I 内可导.,的导数为无穷大.,机动 目录 上页 下页 返回 结束,例1.求函数,(C 为常数)的导数.,解:,即,例2.求函数,解:,机动 目录 上页 下页 返回 结束,说明:,对一般幂函数,(为常数),例如,,(以后将证明),机动 目录 上页 下页 返回 结束,例3.求函数,的导数.,解:,则,即,类似可证得,机动 目录 上页 下页 返回 结束,例4.求函数,的导数.,解:,即,或,机动 目录 上页 下页 返回 结束,原式,是否可按下述方法作:,例5.证明函数,在 x=0 不可导.,证:,不存在,例6.设,存在,求极限,解:原式,机动 目录 上页 下页 返回 结束,三、导数的几何意义,若,曲线过,上升;,若,曲线过,下降;,若,切线与 x 轴平行,称为驻点;,若,切线与 x 轴垂直.,切线方程:,法线方程:,机动 目录 上页 下页 返回 结束,例7.问曲线,哪一点有垂直切线?哪一点处,的切线与直线,平行?写出其切线方程.,解:,令,得,对应,则在点(1,1),(1,1)处与直线,平行的切线方程分别为,即,故在原点(0,0)有垂直切线,机动 目录 上页 下页 返回 结束,四、函数的可导性与连续性的关系,定理1.,证:,设,在点 x 处可导,存在,因此必有,其中,故,所以函数,在点 x 连续.,注意:函数在点 x 连续未必可导.,反例:,在 x=0 处连续,但不可导.,即,机动 目录 上页 下页 返回 结束,在点,的某个右 邻域内,五、单侧导数,若极限,则称此极限值为,在 处的右 导数,记作,即,(左),(左),例如,在 x=0 处有,定义2.设函数,有定义,存在,机动 目录 上页 下页 返回 结束,定理2.函数,在点,且,存在,简写为,定理3.函数,(左),(左),若函数,与,都存在,则称,显然:,在闭区间 a,b 上可导,在开区间 内可导,在闭区间 上可导.,可导的充分必要条件,是,且,机动 目录 上页 下页 返回 结束,内容小结,1.导数的实质:,3.导数的几何意义:,4.可导必连续,但连续不一定可导;,5.已学求导公式:,6.判断可导性,不连续,一定不可导.,直接用导数定义;,看左右导数是否存在且相等.,2.,增量比的极限;,切线的斜率;,机动 目录 上页 下页 返回 结束,思考与练习,1.函数 在某点 处的导数,区别:,是函数,是数值;,联系:,注意:,有什么区别与联系?,?,与导函数,机动 目录 上页 下页 返回 结束,2.设,存在,则,3.已知,则,4.若,时,恒有,问,是否在,可导?,解:,由题设,由夹逼准则,故,在,可导,且,机动 目录 上页 下页 返回 结束,5.设,问 a 取何值时,在,都存在,并求出,解:,故,时,此时,在,都存在,显然该函数在 x=0 连续.,机动 目录 上页 下页 返回 结束,牛顿(1642 1727),伟大的英国数学家,物理学家,天文,学家和自然科学家.,他在数学上的卓越,贡献是创立了微积分.,1665年他提出正,流数(微分)术,次年又提出反流数(积分)术,并于1671,年完成流数术与无穷级数一书(1736年出版).,他,还著有自然哲学的数学原理和广义算术等.,莱布尼兹(1646 1716),德国数学家,哲学家.,他和牛顿同为,微积分的创始人,他在学艺杂志,上发表的几篇有关微积分学的论文中,有的早于牛顿,所用微积分符号也远远优于牛顿.,他还设计了作乘法的计算机,系统地阐述二进制计,数法,并把它与中国的八卦联系起来.,备用题,解:因为,1.设,存在,且,求,所以,机动 目录 上页 下页 返回 结束,在,处连续,且,存在,,证明:,在,处可导.,证:因为,存在,,则有,所以,即,在,处可导.,2.设,故,机动 目录 上页 下页 返回 结束,